MULTI-MOUSE VERSION 2.1c

By Simon Trew, 1991

1.0 About This Manual.

This manual documents the Multi-Mouse software version 2.1c. Version 2.1c is a full release version and this is the complete documentation.

This release supersedes releases1.0, 1.1, 1.2 an 2.1b, which are now no longer supported. 2.1b was a beta-test version. No comments were received as result of sending beta-test copies, and so the software (but not the documentation) is identical to release 2.1b. However some files have been added to the disk.

1.1 Contents.

This manual is split into several files so that it can be easily fitted into most word-processors or text editors. It was written using TextPro, a very good public-domain word-processor, but it should be possible to use it on most other editors, including Atari Writer, with the minimum of effort.

The document files are called MMMANx.DOC where x is the section which is in that file. For example section 5 is in the file MMMAN5.DOC.

You should at least read up to section 5 before using the program. The manual is written in a fairly sequential way so that the easy stuff is dealt with first and then the harder stuff, and sections 2 to 5 just detail the program operation and how to get started with it.
A full contents list follows:

 1.0 About this manual

 1.1 Contents

 1.2 Files on the disk

 2.0 General features

 2.1 Basic operation

 3.0 New features

 3.1 New CIO commands

 3.2 PUT commands

 3.2.1 NOTE actions

 3.2.2 POINT actions

 3.2.3 Notes on NOTE and POINT

 3.3 The RENAME XIO

 3.3.1 Notes on the RENAME XIO

 3.3.2 A sample shape

 3.4 Old bugs

 4.0 Configuration

 4.1 Start page

 4.2 Device name

 4.3 Driver filename

 4.4 Foreground colour

 4.5 Background colour

 4.6 Dos 2.x file

 4.7 Reserved pages

 4.8 Creating the files

 5.0 Multi-Mouse and Turbo-BASIC XL

 5.1 Notes on Turbo-BASIC XL

 6.0 Machine code access

 6.1 Vectors

 7.0 How Multi-Mouse is configured

 7.1 Generating data tables

 7.2 Advantages & disadvantages

 7.3 Other configuration

 8.0 Device drivers

 8.1 Mouse

 8.2 Trakball

 8.3 Touch tablet

 8.4 Joystick

 9.0 Endnotes

 9.1 New tablet driver

 9.2 Other device drivers

 9.3 Distribution

 9.4 Over to You

1.2 Files on the disk.

The main MULTI-MOUSE program on this disk is MMCONFIG.COM, which is a binary file which configures the drivers (see section 4). If you want to use the drivers with Turbo-BASIC XL, you will also need TURBOMOD.TUR, which is detailed in section 5. It also contains FILEDUMP.COM which may be useful to you if you want to write your own drivers.

The other file on this disk is a BASIC demonstration program. TESTPTR.BAS is just a basic test that allows you to draw simple lines on a screen. It is well commented and is worth looking at to show how easy it is to use the drivers in programs.

2.0 General Features.

Multi-Mouse is a set of machine code programs for operating a pointing device within your programs. It is intended for use in mouse-oriented programs (I do the P, you do the WIM). Because few people have mice for their Atari8-bit, Multi-Mouse has been developed to allow a joystick, mouse, touch-tablet or trakball to be used. Your program need not know which is being used.

The word "mover" in this manual is taken to mean "mouse, trakball, joystick or tablet".

The mover should be plugged into the port 2 on your machine, leaving port 1 free for those of you who always have a joystick connected.

To create the screen pointer Multi-Mouse uses two players from the player/missile system. This method allows the pointer too verlay anything on the screen. Two players are used so that the pointer can be made in two colours, which makes it visible at all times, regardless of what colour screen you are using.

2.1 Basic Operation.

Multi-Mouse is installed as a CIO device having the title M:. It is loaded in during the boot process(see Configuration, section 4). It protects itself from Reset and so will be available until the computer is switched off or rebooted.

To display the pointer, use...

 OPEN #n, 12, 0, "M:"

Where n is the channel number with which to access the pointer. Issuing the OPEN statement makes a pointer visible in the middle of the screen. To allow the pointer to be moved around, issue the following statement:

 NOTE #n, X, Y

This will allow the pointer to be moved using the mover, until the button is pressed. It then returns the position of the pointer into the X and Y variables. The position is returned as co-ordinates in the current screen mode. For example, if you are in Graphics 8 then X will be in the range 0..319 and Yin the range 0..191.

You can force the pointer to a certain position using the POINT statement:

 POINT #n, X, Y

will position the pointer at the pixel given in X, Y. Of course in some modes the pixels are quite big. With POINT, the pointer is always positioned at the top left of the pixel. NOTE will return the screen co-ordinates of a pixel whenever any part of the pixel is being pointed at. So the pointer may move slightly if you do a set of statements such as:
 NOTE #n, X, Y

 POINT #n, X, Y

To get rid of the pointer from the screen, use

 CLOSE #n

Performing a NEW or END in BASIC automatically CLOSEs all channels except 0.

You can change the colours of the pointer by POKEing locations 704 (foreground) and 705 (background). The value to poke into the bytes is given as:

 luminance + (16 * colour)

3.0 New Features.

Many new features have been added to the Multi-Mouse driver. These do not increase the amount of user memory required, because they sit in the unused portion of player/missile memory. In fact you can configure the program to give yourself more user memory than the last version. However ,the extra features do mean that you cannot use any of the missiles from the player/missile system, because some of the code lies in that area.

New features include:

 • Compatibility with Turbo-BASIC XL.
 • Relocation and configuration.
 • Easy user-defined pointers.
 • New CIO commands.
 • More flexible NOTEing.
 • Pointer window definition.
 • A better tablet handler.
 • An easier interface for machine-code routines.
3.1 New CIO commands.

You can return the status of the button using a STATUS command. If any button on the pointing device is pressed, it will return 0,otherwise it will return 1. For example:

 STATUS #n, X

 IF X=0 THEN PRINT "You're Dead!"

 IF X=1 THEN PRINT "Aargh! You Got Me!"

You can also find out where the program is loaded, using a GET command. It returns a byte which is the page number of the start of the Multi-Mouse program. This is used mainly to POKE into the Multi-Mouse data table (see section 6). For example:

 GET #n, PAGE:BASE=PAGE*256

 PRINT "Multi-Mouse loaded from address";BASE

3.2 PUT command.

There is also a PUT or PRINT command. This command is used to configure how Multi-Mouse responds to NOTE and POINT.

In the default mode, the NOTE command waits until a button is pressed, returning the position of the pointer; the POINT command sets the pointer position. However you can change these actions using a PUT command. There are seven uppercase letters that you can PUT, each having a different action. If you use any letter other than the seven allowed, it is ignored. This lets you PRINT mnemonics which make the statement's purpose more obvious. For example:

 PRINT #n, "Click"

 PRINT #n, "is Where"

Only the uppercase letters C and W have any effect in these statements. The key letters are: C,U, W, T, P, L and M. The last three are used to adjust how the POINT action works. The first four are used to adjust how the NOTE action works.
You are not advised to PUT any other uppercase letters as part of your commenting text, because future versions may use them. Lower-case letters are guaranteed to be unused, and are safe for commenting.
3.2.1 NOTE actions.

PRINT #n, "Click"

Putting a "C" to the channel makes all future NOTE commands wait until the button is being pressed, then returns the co-ordinates. If the button is being pressed when the NOTE is issued, it returns straightaway.
PRINT #n, "Unclick"

Putting a "U" to the channel makes all future NOTE commands wait until the button is NOT being pressed, then returns the co-ordinates. If the button is not being pressed when the NOTE is issued, it returns straight away.
PRINT #n, "Toggle"

Putting a "T" to the channel makes all future NOTE commands examine the state of the button when the NOTE is issued. NOTE then waits until the button changes state, then returns the co-ordinates. So if the button is pressed when the NOTE is issued, it will allow the pointer to be moved until the button is released. Otherwise it will allow the pointer to be moved until the button is pressed.
PRINT #n, "Where is"

Putting a "W" to the channel makes all future NOTE commands return immediately with the co-ordinates of the pointer. The NOTE will not allow any pointer movement.

An OPEN of the M: device sets the NOTE mode back to "Click".

3.2.2 POINT actions.

It is now possible to set the window inside which the pointer maybe moved. The default is to set the window edges the same as the margins at the edges of the standard screen. You may want to alter this so that you restrict the pointer to a smaller window.

PRINT #n, "Most"

Putting an "M" to the channel makes the next POINT command set the bottom right corner of the window. For example, the following statements restrict the pointer to the graphics window of a split graphics 7 screen:
 GRAPHICS 7

 OPEN #1, 12, 0, "M:"

 PRINT #1, "Most"

 X=159:Y=79:POINT #1,X,Y

 PRINT #n, "Least"

Putting an "L" to the channel makes the next POINT command set the top left corner of the window. For example, the following statements restrict the pointer to the text window of a split graphics 8 screen:
 GRAPHICS 8

 OPEN #1, 12, 0, "M:"

 PRINT #1, "Least"

 X=0:Y=192:POINT #1,X,Y

 PRINT #n, "Position"

Putting a "P" to the channel makes all future POINT commands work as normal, setting the pointer position. The "Least" and "Most" commands only have currency for one POINT after which Multi-Mouse returns to the "Position" state anyway. However this command may be useful for cancelling a previously given "Least" or "Most" which has not been followed by a POINT command.
An OPEN of the M: device sets the point mode back to "Position".

3.2.3 Notes on NOTE and points about POINT.

Whenever you define a window, the current position of the pointer is checked. If the pointer is outside the new window then it is moved to the nearest edge or corner.

POINT and NOTE commands always restrict the pointer to the window. The co-ordinates returned by a NOTE are always relative to the top left corner of a standard graphics screen, not relative to the top of the window. If you would rather it was the other way about then tell me. I couldn't make up my mind.

You may set the window to include parts outside the standard screen. Multi-Mouse will still produce co-ordinates. If the pointer is above or to the left of the standard screen origin then it will return a large positive value. (Actually it's a two's complement number, so you can work out the "real" co-ordinate value by adding it to -256.) If the pointer is below or to the right of the bottom right of the standard screen then the values just keep going in a positive direction.
The use of a window outside the normal screen area is not encouraged. It will not hurt Multi-Mouse but future versions may not support this feature in the same way, if at all.
You are not encouraged to define a window and then switch graphics modes. If the new graphics mode is a lower resolution than the old, the active area may be half-way across a pixel, because the physical screen dimensions and position of the active area will stay the same. This could be quite frustrating for a user.

3.3 The RENAME XIO.

XIO 32 (RENAME from some languages)has now been defined so that you can change the way your pointer looks. The pointer is stored as a series of consecutive bytes and it is intended that you store your own pointer in a string in BASIC, or as a char array in C. The format of the XIO is:

 XIO 32, #n, 12, 0, MYPOINT$

Your pointer can be any length up to255 bytes. However, the longer the pointer is, the longer it takes to erase and draw, and the slower the response to a device will be. A length of 16 or so is enough for most purposes. (The standard pointer is 14bytes long.) MYPOINT$ (or whatever you happen to call it) should be composed as follows:
MYPOINT$(1,1) should contain CHR$(h)where h is the height of the pointer in pixels.

MYPOINT$(2,2) should contain CHR$(x)where x is the x offset. A pointer has an associated x and y offset which indicate the position of the datum point relative to the top left of the pointer. The datum point is the point from which the co-ordinates are calculated, and it is this point which is limited to the window. The x offset is the number of player/missile pixels from the left edge of the stripe to the datum, and can be any number in the range 0..255. If you need an x offset to the left of the left edge of the stripe then use CHR$(256-n) where n is the offset, for example CHR$(256-3) would give you an offset 3 pixels to the left of the left edge.

MYPOINT$(3,3) should contain CHR$(y)where y is the y offset. The y offset is the number of player/missile pixels from the top of the stripe to the datum, and can be any number in the range 0..255. If you need a y offset above the top of the pointer then use CHR$(256-n) where n is the offset, for example CHR$(256-10)would give you an offset 10 pixels above the top edge.

MYPOINT$(4,3+h) contains the foreground shape data (h being the height of the shape). These are defined in the normal way for characters and player/missile graphics (see section 3.3.2 for an example).

MYPOINT$(4+h,3+h+h) contains the background shape data. Shapes have two colours so that they are always distinguishable. However there's not much point, although it's possible, to have both background and foreground at the same pixel.

3.3.1 Notes on the RENAME XIO.

When you issue an XIO 32 the pointer is immediately updated on screen. However, you have not actually made a copy of the pointer into any Multi-Mouse data area (just the player/missile stripes). The pointer data only exists in your string. The pointer on screen is updated with this information whenever you perform any of the following:

 Issue an XIO 32 command.

 Move the pointer vertically with a NOTE.

 Issue a POINT command.

 OPEN the M: device.

Multi-Mouse keeps track of what is currently being displayed and so it can work out what to erase and from where, even though the current pointer is different from the one onscreen (it ain't so dumb as to erase the whole stripe each time).

Because the pointer data is only held in your string, any changes in the string will be taken into account the next time the screen pointer is updated. When switching between pointers, the new pointer is drawn so that the datum point is kept in the same place as before. Changing the contents of your string is not encouraged; a much cleaner way is to keep a different string for each pointer and just XIO 32 with the one you want, for example:

 XIO 32, #n, 12, 0, XHAIR$

 NOTE #n, X, Y

 XIO 32, #n, 12, 0, BUSYBEE$

 NOTE #n, X, Y

When you OPEN the M: device, the standard pointer is always restored. You can also restore it at any time in your own program. To do this define a pointer of zero height. For example:

 XIO 32, #n, 12, 0, CHR$(0)

You should use a 12 as the second parameter to any XIO. (That is, use XIO cmd, #n, 12,) This is because a bug in the operating system means that this number is treated as the number you used in your OPEN statement, and so using 12 means you OPENed for read and write. If you use another number, the CIO may report that you have read-only or write-only access if you try to PRINT or GET from the device. Some languages do not suffer this problem (Atari BASIC works OK with any number), but others do (Turbo-BASIC XL requires a 12).

3.3.2 A sample shape.

This section shows how to define across hair pointer. It really is quite simple.

First, mark out your shape on a grid eight dots wide and however deep you want, like this:

 ..bbb... 0 56

 ..bFb... 16 40

 ..bFb... 16 40

 ..bFb... 16 40

 bbbFbbb. 16 238

 bFF. FFb. 108 130

 bbbFbbb. 16 238

 ..bFb... 16 40

 ..bFb... 16 40

 ..bFb... 16 40

 ..bbb... 0 40

For each row, you have to add together a number for each of the 'b's (background) and each of the 'F's (foreground) to get the numbers in the columns to the right of the grid. Each column in the grid has an associated number. The leftmost column is worth 128, then 64, 32, 16,8, 4, 2, and the rightmost is worth 1.Add together the numbers for all the columns with an 'F' in them. For example row 6 has 'F's in columns worth 64, 32, 8, and 4, so the total foreground for that row is 108.Similarly, row 6 has 'b's in columns worth 128 and 2 so the total background for that row is 130.

The height of the shape is 11 rows. The datum is 3 columns from the leftmost column and so the x offset is 3 (note that the leftmost column has an x offset of 0). The datum is 5rows from the top row and so the y offset is 5 (again, the topmost row has a y offset of 0). So the total data for the shape is:

 DATA 11,3,5

 DATA 0,16,16,16,16,108,16,16,16,16,0

 DATA 56,40,40,40,238,130,40,40,40,56

You can then read this into your pointer string with statements such as:

 READ HEIGHT

 DIM XHAIR$(HEIGHT+HEIGHT+3)

 XHAIR$(1)=CHR$(HEIGHT)

 FOR LOOP=2 TO HEIGHT+HEIGHT+3

 READ IN:XHAIR$(LOOP)=CHR$(IN)

 NEXT LOOP

When defining your shape, remember that a player/missile pixel is twice as wide as it is high. If you forget this, you may find that your shapes look rather squashed.

3.4 Old Bugs.

All reported bugs from previous versions have now been corrected. Details of these corrections follow.

On version 1.0 there was a bug that a NOTE in Graphics 8 would return 255into the Y co-ordinate when the cursor was at the top of the screen.

On version 1.0 there was a bug that an OPEN would not always display the pointer. This has now been cured.

There still remains the "bug" that changing graphics mode will upset the player/missile system. This is because of bad programming in the OS and cannot be avoided except by intercepting the GRAPHICS call. You should CLOSE the channel and re-OPEN it whenever you change graphics mode. If you do not, you will get an ugly stripe. You will not harm the Multi-Mouse software.

The Break key is still not checked, so that Break has no effect until the handler returns control to your application.

4.0 Configuration.

Before you use the Multi-Mouse software you must configure it fory our application. Configuring allows you to set your own preferences and to change the defaults. Configuring makes the program operate with a greater variety of other software, because you can change it to fit in with that software.

Configuring is done by the program MMCONFIG.COM. This is the only program you need to create device drivers. All of the code for the four device drivers is included in the MMCONFIG.COM binary file.
To run MMCONFIG, use your DOS's binary file load option. You cannot BRUN it from Turbo-BASIC XL.

The configuration options are selected by pressing the appropriate letter key, and sometimes also typing in a value. The options are described below:

4.1 Start Page.

Option A allows you to change the start page. This is a hex number which indicates where the Multi-Mouse should sit in memory. Normally you will not have to worry about this because it defaults to the lowest possible value for the current configuration of your system. You can change it if you know that you want Multi-Mouse elsewhere to work with another program.

The best advice is to load in all the utilities you would normally use when using Multi-Mouse, then run this program and leave this option at the default. Valid values are hex value in the range 00-F8, but the start page must lie on a 2K boundary because of the player/missile graphics.

4.2 Device Name.

If you already have a driver which has the M: handle, you will want to call Multi-Mouse another name. You can do this by selecting the device name using option B. For example, if you chose H then you would use the following command to open the device:

 OPEN #n, 12, 0, "H:"

4.3 Driver filename.

Option C allows you to change the name of the file that is written out by the program. You are asked to type a filename. If you omit to include a device specifier, D: is assumed.

4.4 Foreground Colour.

This option specifies the default foreground colour of the pointer. The colour is that of the background of the screen, and pressing D cycles it.

4.5 Background Colour.

This option specifies the default background colour of the pointer. The colour is that of the border of the screen, and pressing E cycles it.

4.6 DOS 2.x file.

If you are using Multi-Mouse under any Atari DOS 2 derivative then you can get it to load another file after it has loaded. You can use this to load a chain of files in an AUTORUN sequence. My other device drivers also allow you to do this so you are not restricted to one AUTORUN per disk. Note that the filename is that of a binary file (not a BASIC file)and must include the D: part. See section 5 on using Multi-Mouse with Turbo-BASIC XL if you wish to use Turbo-BASIC XL with Multi-Mouse.

If you press Return in response to the prompt without entering a filename, then (None) will appear as the filename. This means that Multi-Mouse will not load another binary file once it is loaded.

4.7 Reserved pages.

Option G allows you to reserve pages of memory for your own use, for example to use players 2 & 3 of the player/missile system, or to reserve memory for a user-defined character set. Multi-Mouse by default reserves six pages, and sets MEMLO to the start page + $06. If you reserve more pages, then those pages between(start page + $06) and (start page +reserved pages -1) inclusive are free for your own use.

4.8 Creating the files.

Options H-L allow you to create a binary file for any of the four drivers included. Alternatively option 10 allows you just to create code for the CORE section. This allows you to append your own machine code device driver to it. Do not try to run the CORE program on its own; you must append a binary file which takes care of the vectors detailed in section 6. You will only want to use this option if you want to write your own device driver.

If you are using DOS 2.x, you will want to name your file AUTORUN.SYS so that it will load automatically when you boot the disk. Or you may want to have all four drivers on the disk and select from a menu which one to load.

5.0 Multi-Mouse and Turbo-BASIC XL.

Multi-Mouse can be configured for use with Turbo-BASIC XL, but the following notes must be observed.

Turbo-BASIC XL sits in low memory, whereas Atari BASIC sits in high memory. Unfortunately this means that you must have a different Multi-Mouse binary file for the different BASICs. (The only thing you need to change is where the program sits in memory. Everything else can stay the same.)The starting page (option A from the menu) should be at least $38 for use with Turbo-BASIC XL.

Before you use your drivers, you must also modify your copy of Turbo-BASIC XL. The standard copy has a rather nasty approach to MEMLO. It sets MEMLO regardless of any other program that is in low memory. The program TURBOMOD.TUR allows you to create a new copy of Turbo-BASIC XL which only adjusts MEMLO if it is too low for Turbo-BASIC XL to operate. This is good programming practice, and all my device drivers use this method so they can all be used together.

TURBOMOD.TUR is better than a previous version of this utility, 80TBMODI.TUR, which I produced for my80-column device. The new version allows you to use the same copy of Turbo-BASIC XL whether or not you are not using another application that sits in low memory. You can use this copy with the 80-column device, of course. TURBOMOD.TUR is a Turbo-BASIC XL program and you will need to run it under the Turbo-BASIC XL environment.

Once you have modified Turbo-BASIC XL, your altered copy can be used whether or not you are using the Multi-Mouse utility (or any other low-memory utility).

5.1 Notes on Turbo-BASIC XL.

You cannot BLOAD the Multi-Mouse driver (or any other application that sits in low memory) from Turbo-BASIC XL: it must be the other way around. This is because your BASIC program sits in low memory it would be erased by the newly-loaded driver. So if you want Turbo-BASIC XL to autoboot, rename the binary file to TURBO.COM and use option G on the MMCONFIG menu to load from it. Of course you can only do this under DOS 2.x. If you have another DOS (for example SpartaDOS X) then create a batch file which loads in the Multi-Mouse driver and then loads in Turbo-BASIC XL.

I have not tried Multi-Mouse with compiled Turbo-BASIC XL programs.

6.0 Machine Code Access.

This section is intended for those who wish to add their own device drivers for such things as the keyboard or a light pen. It does not discuss in general the way the program works. I hope that the code is commented enough to make it understandable.

Multi-Mouse is written in two parts. The first, CORE, contains the Multi-Mouse primitives such as move the pointer to a given position, convert player/missile co-ordinates to OS ones, all the CIO handling, and so on. The other part is the device-dependent part which handles movement and click operations for a particular device. The two parts communicate through three procedures whose addresses are defined in a table along with many other things.

The address of this table can be accessed by performing a GET and multiplying the result by 256. (The table always starts on a page boundary.) I guarantee that this table and the following calling mechanisms will stay the same for future issues. I do not guarantee anything else. Do not call particular addresses or assume that certain locations hold certain values.

You must decide for yourself where to place your driver. You are not encouraged to use the player/missile area, because future versions of Multi-Mouse may use it.

You can update the table at any time, even from BASIC, and your changes remain until reboot, except for those things that are always updated on an OPEN (detailed in sections 2 and 3).

The table contains:

Address Mnemonic Contents

------- -------- --------

+0 and +1 calcxy Address of pointer move routine.

+2 and +3 movep Address of device move routine.

+4 and +5 clickp Address of device click routine.

+6 and +7 saddr Address of shape (address of string passed to XIO 32, or default).

+8 xcoord Pointer x position (P/M coord).

+9 ycoord Pointer y position (P/M coord).

+10 forecol Foreground colour on OPEN.

+11 backcol Background colour on OPEN.

+12 minx Left edge of active area (P/M coord).

+13 miny Top edge of active area (P/M coord).

+14 maxx Right edge of active area (P/M coord).

+15 maxy Bottom edge of active area (P/M coord).

6.1 Vectors.

The calcxy vector is supplied by the CORE system. By doing an indirect JSR through this vector you can get and set the co-ordinates of the pointer. You are encouraged to use this vector to get the co-ordinates rather than look up xcoord and ycoord in the table. (All of the supplied device drivers use the vector.) The calcxy routine should be called with a value in the A register. The lowest three bits when set cause the calcxy routine to:

Bit Function

--- --------

 0 Set the x position to the value in the X register.

 1 Set the y position to the value in the Y register.

 2 Force a redraw of the pointer.

The A register is unchanged by the routine. X and Y are loaded with the actual co-ordinates of the cursor: these may be different from your requested co-ordinates if the pointer was limited to the active area.
Make sure all "unused" bits of A are reset, because future versions may use them for other purposes. You are not required to make sure that X and Y are in range: that is done automatically. Even with bit 1 set, the pointer is only updated if the actual y co-ordinate has changed since the last screen update. If you must have the screen updated then set bit 2. The only reason you should want to set bit 2 is if you change the pointer address (saddr) to a new pointer. For example with a light pen you may want a completely blank pointer when the light pen is lifted. But try to leave things as you find them, or your user may get annoyed. Example call to calcxy:

 LDA #%000 ; Get the status

 JSR indirect ; of the pointer.

 :

 :

 indirect: JMP (calcxy)

The actual values loaded into X and Yare player/missile co-ordinates of the position of the datum point.

The click vector should be provided by your driver. It is used to determine the state of the button. Your routine should set A to 0 if the button is pressed, and to 1 if it is not pressed. You are not required to save any registers or flags. End your routine with a RTS. Example (from JOYSTICK):

 click: LDA stick1 ; Get stick value

 RTS ; Simple eh!

The movep vector should be provided by your driver. It is called by NOTE to allow the pointer to be moved around. On entry, the A register will be set to indicate the exit condition. If the click function returns the value in this register your routine should return. NOTE decides the value depending on whether it is in Click, Unclick or Toggle mode.

Your movep function should move the pointer around using the calcxy vector. It should return with a RTS. You are not required to save any registers or flags. Good practice dictates that you should call your click function to determine the exit condition, although only a purist would do this by going through the clickp vector. For example:
 movep: STA exit ; Save exit condition

 loop: LDA #0 ; Main loop.

 :

 :

 LDA #%011 ; Set X and Y.

 JMP indirect ; update screen.

 JSR clickp ; Done yet?

 CMP exit ; Check exit condition.

 BNE loop ; No, loop back.

 RTS ; Yes, done.

 indirect: JMP (calcxy)

7.0 How MMCONFIG.COM was generated.

MMCONFIG.COM was generated largely automatically, and it may be useful to discuss the way I did it.

The 6502 processor does not make it easy to generate relocatable code of any size, because there are no relative jump instructions and so on. It is therefore difficult to write code that will relocate itself when it loads. This is further hindered because the standard DOS loader must load programs into absolute addresses

.

My solution is to produce a configuration program which allows the programs to be configured to work at a particular place in memory. Of course, this does mean that any particular configuration is then fixed once the file is written out.

The first time I used this method was with my 80-column driver. In that instance the configuration program was written in BASIC, which made it rather slow, so this time I chose to write it in PL65 (which I used to write Multi-Mouse itself, except that I only used assembly language and no high-level statements).

7.1 Generating data tables.

The method I use is to compile all of the programs twice, at different places in memory. The first time they are compiled at $2000, the second at$3000, although in fact the second can be compiled on any page boundary. The first object file is given the extension .20 and the second .30. The FILEDUMP program is then run which, when given the filename, takes the two versions and produces a .REC file from them. For example given the filename CORE it takes CORE.20 and CORE.30 and generates CORE.REC. This.REC file contains PL65 statements and can be directly included into the MMCONFIG program with no further processing.

The .REC file contains two data tables: The first is just a hex dump of the .20 file. The second gives offsets into this table where the data bytes are different between the.30 and .20 files.

Effectively the only differences will be page addresses of data items and procedures within the program. By adding on a delta value to each of these values, the program can effectively be relocated by whole pages.

7.2 Advantages & disadvantages.

This method has the flaw that the code can only be relocated by whole pages, although in this case there is no disadvantage because it must start on a 2K boundary for the player/missile graphics to work. Also, it cannot cope with any arithmetic on addresses other than additions and subtractions. That is, if an address was say multiplied by three then the relocator could not detect it. However, it is very unusual (and thoroughly bad practice) to do anything to addresses other than add or subtract offsets from them.
The beauty of it is that the relocation is entirely automatic, and that all that is needed to generate a binary file is to dump the first buffer straight to disk. It also makes the configuration program stand-alone with no need to have any other files to run the configuration.

The write_code procedure in the MMCONFIG program actually performs the relocation. It calls add_delta to relocate the code, writes the buffer, and then calls add_delta again to relocate the code back to its original position, so that it can be relocated to a different place in the same run.

7.3 Other configuration.

The other part of the configuration is to configure items such as colours, the DOS file to load, and soon. For these there are a set of offsets into the CORE data table, which is then updated whenever the options are selected. The offset shave to be worked out manually, since there is no easy way to have them automatically computed. But the job can be completed fairly easily armed with a cross-reference and a listing of the program from which the dump was created. (That is, the CORE source code.)

In fact it is these miscellaneous configurable items which are the real problems to program for; the relocation is very simple once the procedures have been written. I try to offer a fairly reasonable set of items but it could be taken further, the idea is to know when to stop. If you think that a particular variable needs to be configurable, for example the position of the pointer on an OPEN command, then tell me about it.

8.0 Device Drivers.

This section describes data formats of the four supported input devices.

8.1 Mouse.

An ST mouse returns a four-bit value into the joystick pins. The value can be read using STICK(1). My device reads the hardware register directly, because the shadow register is updated too slowly to keep up with fast mouse movement.

The four-bit value is split into two two-bit pairs. Bits 1 and 0 handle the horizontal axis, bits 3 and 2handle the vertical axis.

The two bit-pairs change in a Graycode as the mouse moves. The Graycode order is thus:

 00

 01

 11

 10

 00 again, and so on.

If the mouse in one direction, this sequence is returned continuously as the mouse moves. If it is moving in the opposite direction, the sequence is returned in the opposite order.

All that is necessary to determine movement is to compare the two-bit code against the last read code. If the two are the same, no movement has occurred. If they are different, the code is checked against a table containing the Gray code sequence. I fit matches the value in this table, it is moved in the appropriate direction, else it is moved in the opposite direction.

The left button on the mouse is returned like the joystick button, in STRIG(1). The right button comes out onto the second paddle. When the right button is pressed the paddle value falls from 228 to about 100.However I do not use this value because I found it to be unreliable.

Did you know you can play Missile Command with a mouse when in Trakball mode?

8.2 Trakball.

The trakball, like the mouse, returns a four-bit coded value where two bits are for the vertical axis and two for the horizontal. As with the mouse, I read the hardware register directly, because the shadow is updated too slowly for fast trakball movement.

Bit 3 of the trakball output changes when there is vertical movement. If the value of bit 3 has changed since last read, bit 2 indicates the direction of movement, 1=down, 0=up.

Similarly, bit 1 changes when there is horizontal movement. If the value of bit 1 has changed since last read, bit 1 indicate the direction of movement, 1=right, 0=left.

All trakball trigger values return in the same way as the joystick, via STRIG(1).

8.3 Touch Tablet.

The Touch Tablet returns two paddle vales. The horizontal axis is returned in PADDLE(2), and the vertical in PADDLE(3).

The axes both run from 0 to 228. In the horizontal axis, 0 is the left of the tablet, and 228 is the right of the tablet. In the vertical axis, 0is the bottom of the tablet and 228 is the top of the tablet.
I "trim" the values so that there is no need to have the pointer right against the edge of the tablet. Notice that the vertical axis is inverted compared to that of the screen.

The touch tablet has three buttons, and each of these resets one bit in STICK(1). Since I don't discriminate between buttons I just check whether any bit is reset by comparing the value of STICK(1) with %1111.

8.4. Joystick.

The joystick returns a four-bit value in STICK(1). Each bit corresponds to one of the directions. Bit 0 is set to 0 when there is up movement. Bit 1 is set to zero when there is down movement, bit 2 when there is left movement and bit 3 when there is right movement.

Diagonal movements set two of the bits to zero, for example up and left sets bits 0 and 2 to zero. It is possible to set both 'up' and 'down' bits, but it should never happen (Multi-Mouse will just cancel nothbits out so no movement will occur.)
The trigger button is, of course, returned in STRIG(1).

9.0 Endnotes.

This section includes miscellaneous information concerning your beta-test release and also requesting your help.

9.1 New Tablet Driver.

I have redesigned the tablet handler since version 1.0 of Multi-Mouse. The averaging is now much better (it had a bug in it before). It also prevents the shape from zooming to the top right corner when the pointer is removed from the tablet. Instead it just stays where it was.

9.2 Other Device Drivers.

I have written Multi-Mouse with the idea of allowing people to add their own device drivers. I hope that I have provided a good enough interface and documentation to allow this.

However, if you have a device that you would like to use with Multi-Mouse, but don't feel up to writing for it yourself, I can help. Contact me and I will try to arrange something.

I have only programmed for those devices which I own. I should be especially interested if anyone has written a device driver for one the following devices, or wants one written:

 Koala Pad (should be just a new Tablet driver.)

 Light Pen

 Keyboard

9.3 Distribution.

You may distribute Multi-Mouse at no charge. The only condition is that you must not modify the programs before distributing them. This is simply because otherwise I end up getting technical questions from people who have a modified copy that I don't know about. If you have any modifications, include the details as a text file on the disk, and please send me a copy.

9.4 Over to You.

If you have written a device yourself, I would be very pleased to receive a copy of the source code. With your permission, I will then include it in the configuration program and document it as part of Multi-Mouse. Of course, you will be credited as the author.

If you spot any errors in the documentation, of either a technical or a typographical nature, please annotate the documentation and return it. I need your support. As a user of my utilities, tell me what you think of them and how I can improve them.

Phone me on (0438) 354652, or write to:

Simon Trew

322 York Road

STEVENAGE

Herts.

SG1 4HW.

This program came from L.A.C.E.

The London Atari Computer Enthusiasts

