
FastBasic - Fast BASIC interpreter for the Atari 8-bit computers

Introduction

FastBasic is a fast interpreter for the BASIC language on the Atari 8-bit computers.

One big difference from other BASIC interpreters in the old 8-bit computers is the lack of line
numbers and the integrated full-screen editor. This is similar to newer programming environments,
giving the programmer a lot of flexibility.

Another big difference is that default variables and operations are done using integer numbers,
this is one of the reasons that the programs run so fast. The other reason is that the program is
parsed on run, generating optimized code for very fast execution.

Currently, FastBasic support: - Integer and floating point variables, including all standard
arithmetic operators. - All graphic, sound and color commands from Atari Basic, plus some
extensions from Turbo Basic. - All control flow structures from Atari Basic and Turbo Basic. -
Minimal string support. - Arrays with “word” and “byte” types. - User defined procedures. -
Compilation to binary loadable files. - Available as a full version FB.COM and also as a smaller
integer-only FBI.COM.

First Steps

To run FastBasic from the included disk image, simply type FB at the DOS prompt. This will
load the IDE and present you with a little help text:

1 --D:HELP.TXT -------------------0--
2 ' FastBasic v3.5 - (c) 2018 dmsc
3 '
4 ' Editor Help
5 ' -----------
6 ' Ctrl -A : Move to beg of line
7 ' Ctrl -E : Move to end of line
8 ' Ctrl -U : Page up
9 ' Ctrl -V : Page down
10 ' Ctrl -Z : Undo (only curr line)
11 ' Ctrl -Q : Exit to DOS
12 ' Ctrl -S : Save file
13 ' Ctrl -L : Load file
14 ' Ctrl -N : New file
15 ' Ctrl -R : Parse and run program

1

16 ' Ctrl -W : Compile to binary file
17 '
18 '- Press CONTROL -N to begin -

You are now in the integrated editor. In the first line of the screen the name of the currently
edited file is shown, and at the right the line of the cursor. Note that lines that show an arrow
pointing to the top-left are empty lines beyond the last line of the current file.

In this example, the cursor is in the first column of the first line of the file being edited.

As the help text says, just press the CONTROL key and the letter N (at the same time) to begin
editing a new file. If the text was changed, the editor asks if you want to save the current file to
disk, to skip saving simply type CONTROL-C, to cancel the New File command type ESC.

Now, you can start writing your BASIC program. Try the following example, pressing RETURN
after each line to advance to the next:

1 INPUT "WHAT IS YOUR NAME?";NAME$
2 ?
3 ? "HELLO", NAME$

If you made any mistake, simply move back using the cursor keys, this is CONTROL and -, =, + or
*, then press BACKSPACE key to delete the character before the cursor or press DELETE (CONTROL
and BACKSPACE) to delete the character bellow the cursor. To join two lines, go to the end of the
first line and press DELETE.

After typing the last line, you can run the program by pressing CONTROL and R.

If you correctly typed your program, the computer will ask you for your name, type anything
you want and press RETURN

After this, the IDE waits for any key press to return to the editor, so you have a chance to see
all your program output.

If you made a mistake in the program, instead of running the cursor will be moved to the line
and column of the error so you can correct it and retry.

Remember to save often, pressing the CONTROL and S keys, you need to supply a filename. Type
the name, and press ENTER to save. As with any prompt, you can press ESC to cancel the save
operation. Use the BACKSPACE over the proposed file name if you want to change it.

2

Compiling the program to disk

Once you are satisfied with your program, you can compile to a disk file, producing a program
that can be run directly from DOS.

Press the CONTROL and W key, and type a name for your compiled program. It is common practice
to name your compiled programs with an extension of “.COM” or “.XEX”, also with “.COM”
files you don’t need to type the extension in some DOS.

Compiled programs include the full runtime, so you can distribute them alone without the IDE.

About the syntax

The syntax of FastBasic language is similar to many BASIC dialects, with the following main
rules:

1. A program line must be of 4 types:

• a comment line, starting with a dot . or an apostrophe ',
• a statement followed by its parameters,
• a variable assignment, this is a name followed by = and a the expression for the new

value. For string variables, there is also a concatenation operator, =+.
• an empty line.

2. All statements and variable names can be lower or uppercase, the language is case insensitive.

3. Statements can be abbreviated to reduce typing, each statement have a different abbrevia-
tion.

4. Multiple statements can be put on the same line by placing a colon : between statements.

5. After any statement a comment can be included by starting it with an apostrophe '.

6. No line numbers are allowed.

7. Spaces after statements and between operators are optional and ignored.

In the following chapters, whenever a value can take any numeric expression, it is written as
“value”, and whenever you can use a string it is written as “text”.

Expressions

Expressions are used to perform calculations in the language.

3

There are numeric expressions (integer and floating point), boolean expressions and string
expressions.

In FastBasic, standard numeric expressions are evaluated as integers from -32768 to 32767, this
is called 16 bit signed integer values.

Floating point expressions are used only if numbers have a decimal point. Floating point numbers
are stored with standard Atari BCD representation, with a range from 1E-98 to 1E+98.

Boolean expressions are “true” or “false”, represented as the numbers 1 and 0.

String expressions contain arbitrary text, in FastBasic strings can have up to 255 characters of
length.

Numeric Values

Basic values can be written as decimal numbers (like 123, 1000, etc.), as hexadecimal numbers
with a $ sign before (like $1C0, $A00, etc.) or by using the name of a variable.

Floating point values are written with a decimal dot and an optional exponent (like 1.0E+10, or
-3.2)

Numeric Variables

Variable names must begin with a letter or the symbol , and can contain any letter, number or
the symbol . Examples of valid variable names are “COUNTER”, “My_Var”, “num1”.

Floating point variables have an “%” as last character in the name. Examples of valid names are
“MyNum%”, “x1%”.

Numeric Operators

There are various “operators” the perform calculation in expressions, the operators with higher
precedence always execute first. These are the integer operators in order of precedence:

• + - : addition, subtraction, from left to right.
• * / MOD : multiplication, division, modulus, from left to right.
• & ! EXOR : binary AND, OR and EXOR, from left to right.
• + - : positive / negative.

For example, an expression like 1 + 2 * 3 - 4 * -5 is evaluated in the following order:

• First, the unary - before the 5, giving the number -5.

4

• The first multiplication, giving 2*3 = 6.
• The second multiplication, giving 4*-5 = -20.
• The addition, giving 1+6 = 7.
• The subtraction, giving 7 - -20 = 27.

So, in this example the result is 27.

If there is need to alter the precedence, you can put the expression between parenthesis.

When using floating point expressions, the operators are:

• + - : addition, subtraction, from left to right.
• * / : multiplication, division, from left to right.
• ^ : exponentiation, from left to right.
• + - : positive / negative.

Note that integer expressions are automatically converted to floating point if needed, this allows
mixing integers and floating point in some calculations, but you must have care to force floating
point calculations to avoid integer overflows.

Example: the expression

1 a% = 1000 * 1000 + 1.2

gives correct result as “1000” is converted to floating point before calculation, but:

1 x =1000: a% = x * x + 1.2

gives incorrect results as the multiplication result is bigger tan 32767.

Note that after any floating point errors (division by 0 and overflow), ERR() returns 3.

Boolean Operators

Boolean operators return a “true” or “false” value instead of a numeric value, useful as conditions
in loops and IF statements.

Note that any boolean value can also be used as a numeric value, in this case, “true” is converted
to 1 and “false” converted to 0.

The supported boolean operators, in order of precedence, are:

• OR : Logical OR, true if one or both operands are true.
• AND : Logical AND, true only if both operands are true.
• NOT : Logical NOT, true only if operand is false.

5

• <= >= <> < > = Integer or floating point comparison, compare the two numbers and
return true or false. Note that “<>” is “not equal”. You can only compare two values
of the same type, so an expression like “x = 1.2” is invalid, but “1.2 = x” is valid as the
second operand is converted to floating point before comparison.

Arrays

Arrays hold many ordered values (called elements), the elements can be accessed by an index.

In FastBasic, arrays must be dimensioned before use (see DIM statement bellow), the index of the
element is written between parenthesis and goes from 0 to the number of elements less 1.

You can use an array position (the variable name followed by the index) in any location where a
standard numeric variable or value is expected.

Arrays can be of three types: - WORD arrays (the default if no type is given) use two bytes of
memory for each element, and works like normal numeric variables. - BYTE arrays use only one
byte for each element, but the numeric range is reduced from 0 to 255. - STRING arrays store
an string in each element. String arrays use two byte of memory for each element that is not yet
assigned (containing empty strings), and 258 bytes for each element with a string assigned.

String Values

String values are written as a text surrounded by double quotes (""). If you need to include a
double quote character in a string, you must write two double quotes together.

Example:

1 PRINT "Hello ""world"""

Will print:

1 Hello "world"

The bracket operator [] allows creating a string from a portion of another, and accepts two
forms:

• [num] This form selects all characters from num up to the end of the string, counting
from 1. So, A$[1] selects all the string and A$[3] selects from the third character to the
end, effectively removing the leftmost two characters.

• [num1 , num2] This form selects at most num2 characters from num1, or up to the end
of the string if there is not enough characters.

6

Example:

1 PRINT "Hello World"[7]
2 A$ = STR$ (3.1415) [3 ,3]
3 ? A$
4 ? A$ [2 ,1]

Will print: World 141 4

Note that the bracket operator creates a new string and copies the characters from the original
string to the new one. As the buffer used for the new string is always the same, you can’t
compare two values without first assigning them to a new variable.

This will print “ERROR”:

1 A$="Dont Work"
2 IF A$ [2 ,2] = A$ [3 ,3] THEN ? "ERROR"

But this will work:

1 A$="Long string "
2 B$=A$ [2 ,2]
3 IF B$ = A$ [3 ,3] THEN ? "ERROR"

String Variables

String variables are named the same as numeric variables but must end with a $ symbol. Valid
variable names are “Text”, ”NAME1”.

String variables always use 256 bytes, the first byte stores the string length and the following
bytes store up to 255 characters.

There are two types of string assignments:

• The standard = sign copies the string expression in the right to the variable in the left.

• The =+ sign copies the string expression at the right to the end of the current string,
concatenating the text.

Example:

1 A$ = "Hello "
2 A$ =+ "World"
3 ? A$

7

Will print:

1 Hello World

Standard Functions

Functions take parameters between parenthesis and produce a result. Following is a list of all
the functions supported by FastBasic.

• TIME : Returns the curren time in “jiffies”. This is about 60 times per second in NTSC
systems, 50 times per second in PAL systems.

• ABS(num) : Returns the absolute value of num. Can be used with integers and floating
point.

• SGN(num) ; Returns the sign of num, this is 1 if positive, -1 if negative or 0 if num is 0.
Can be used with integers and floating point.

• PADDLE(n): Returns the value of the PADDLE controller n.

• PTRIG(n) : Returns 0 if the PADDLE controller n button is pressed, 1 otherwise.

• STICK(n) : Returns the JOYSTICK controller n position, this is 15 if centered. See Atari
Basic manual for all possible values.

• STRIG(n) : Returns 0 if JOYSTICK controller n button is pressed, 1 otherwise.

• RAND(num) : Returns a random, non negative number, less than num.

• KEY() : Returns 0 if no key was pressed, or a keycode. The returned value only goes to
0 after reading the key in the OS (via a GET or POKE 764,0 statement). Hint: The value
returned is actually the same as (PEEK(764)EXOR 255).

• FRE() : Returns the free memory available in bytes.

• ERR() : Returns the last Input/Output error value, or 1 if no error was registered.

• LEN(string) : Returns the length of the string.

• VAL(string) : Convert string to a number. If no conversion is possible, ERR() is set to 18.
Can be used with integers and floatign point.

• ASC(string) : Returns the ATASCI code of the first character of the string.

Floating Point functions

This functions use floating point values, and are only available in the floating point version.

8

In case of errors (such as logarithm or square root of negative numbers and overflow in the
results), the functions returns an invalid value, and the ERR() function returns 3.

• ATN(n): Arc-Tangent of n.

• COS(n): Cosine of n.

• EXP(n) : Natural exponentiation.

• EXP10(n) : Returns ten raised to n.

• INT(num) : Converts the floating point number num to the nearest integer from -32768 to
32767.

• LOG(n) : Natural logarithm of n.

• LOG10(n): Decimal logarithm of n.

• RND(): Returns a random positive number strictly less than 1.

• SIN(n): Sine of n.

• SQR(n): Square root of n.

String functions

• STR$(num): Returns a string with a printable value for num. Can be used with integers
and floating point. Note that this function can’t be used at both sides of a comparison, as
the resulting string is overwritten each time it is called.

Low level Functions

The following functions are called “low level” because they interact directly with the hardware.
Use with care!.

• ADR(arr): Returns the address of the first element of arr in memory. Following elements
of the array occupy adjacent memory locations.

• ADR(str): Returns the address of the string in memory. The first memory location contains
the length of the string, and following locations contain the string characters.

• DPEEK(addr): Returns the value of memory location addr and addr+1 as a 16 bit integer.

• PEEK(address): Returns the value of memory location at address.

• USR(address[,num1 . . .]): Low level function, calls the user supplied machine code subrou-
tine at address.

9

Parameters are pushed to the CPU stack, with the LOW part pushed first, so the first
PLA returns the HIGH part of the last parameter, and so on.

The value of the A and X registers is used as a return value of the function, with A the low
part and X the high part.

This is a sample usage:

1 ' PLA / EOR $FF / TAX / PLA / EOR $FF / RTS
2 DATA ml() byte = $68 ,$49 ,$FF ,$AA ,$68 ,$49 ,$FF ,$60
3 FOR i=0 TO 1000 STEP 100
4 ? i, USR(ADR(ml),i)
5 NEXT i

List of statements

In the following descriptions, the statement usage is presented and the abbreviation is given after
a /.

Console Print and Input Statements

Reads key from Keyboard
GET var / GE.

Waits for a key-press and writes the key value to var.

var can be a variable name or an array position (like “array(123)”)

Input variable or string
INPUT var / I.
INPUT “prompt”; var
INPUT “prompt”, var

Reads form keyboard/screen and stores the value in var.

A “?” sign is printed to the screen before input, or the “prompt” if given. Also, if there is a
comma after the prompt, spaces are printed to align to a column multiple of 10 (similar to how
a comma works in PRINT).

If the value can’t be read because input errors, the error is stored in ERR variable. Valid errors
are 128 if BREAK key is pressed and 136 if CONTROL-3 is pressed.

In case of a numeric variable, if the value can’t be converted to a number, the value 18 is stored
in ERR().

10

Moves the screen cursor
POSITION row, column / POS.

Moves the screen cursor position to the given row and column, so the next PRINT statement
outputs at that position.

Rows and columns are numerated from 0.

Print strings and numbers
PRINT expr, . . . / ?

Outputs strings and numbers to the screen.

Each expr can be a constant string, a string variable or any complex expression, with commas or
semicolons between each expression.

After writing the last expression, the cursor advanced to a new line, except if the statement ends
in a comma or a semicolon, where the cursor stays in the last position.

If there is a comma before any expression, the column is advanced to the next multiple of 10, so
that tabulated data can be printed.

Writes a character to the screen
PUT num / PU.

Outputs one character to the screen, given by it’s ATASCI code.

Control Statements

Endless loops
DO
LOOP / L.

Starts and ends an endless repetition, when reaching the LOOP statement the program begins
again executing form the DO statement.

The only way to terminate the loop is via de EXIT statement.

Calls a subroutine
EXEC name / EXE.

Calls the subroutine name. Note that the subroutine must be defined with PROC, but can be
defined before or after the call.

Exits from loop or PROC
EXIT / EX.

11

Exits current loop or subroutine, by jumping to the end.

In case of loops, the program continues after the last statement of the loop, in case of PROC,
the program returns to the calling EXEC.

Loop over values of a variable
FOR var=value TO end [STEP step] / F. TO S.
NEXT var / N.

FOR loop allows performing a loop a specified number of times while keeping a counting variable.

First, assigns the value to var, and starts iterations. var can be any variable name or a word
array position (like “array(2)”).

In each iteration, first compares the value of var with end, if the value is past the end, terminates
the loop.

At the end of the loop, var is incremented by step (or 1 if STEP is omitted) and the loops
repeats.

An EXIT statement also terminates the loop and skips to the end.

Note that if step is positive, iteration ends if value of var is bigger than end, but if step is
negative, iteration ends if value of var is less than end.

Also, end and step are evaluated only once at beginning of the loop, that value is stored and
used for all loop iterations.

If at the start of the loop value is already past end, the loop is completely skipped.

As an extension, you can left out the variable name in NEXT, and currently the variable name
is actually ignored.

Conditional execution
IF condition THEN statement / I. T.
IF condition
ELIF condition / ELI.
ELSE / E.
ENDIF / END.

The first form (with THEN) executes one statement if the condition is true.

The second form executes all statements following the IF (up until any of ELIF, ELSE, ENDIF)
only if condition is true.

If condition is false, optional statements following the ELSE (until an ENDIF) are executed.

In case of an ELIF, the new condition is tested and acts like a nested IF until an ELSE or
ENDIF.

12

This is an example of a multiple IF/ELIF/ELSE/ENDIF statement:

1 IF _condition -1_
2 ' Statements executed if
3 ' _condition -1_ is true
4 ELIF _condition -2_
5 ' Statements executed if
6 ' _condition -1_ is false but
7 ' _condition -2_ is true
8 ELIF _condition -3_
9 ' Also , if _condition -1_ and
10 ' _condition -2_ are false but
11 ' _condition -3_ is true
12 ELSE
13 ' Executed if all of the above
14 ' are false
15 ENDIF

Define a subroutine.
PROC name / PRO.
ENDPROC / ENDP.

PROC statement starts definition of a subroutine, that can be called via EXEC.

Note that if the PROC statement is encountered while executing surrounding code, the full
subroutine is skipped, so PROC / ENDPROC can appear any place in the program.

Loop until condition is true
REPEAT / R.
UNTIL condition / U.

The REPEAT loop allows looping with a condition evaluated at the end of each iteration.

Executes statements between REPEAT and UNTIL once, then evaluates the condition. If false,
the loop is executed again, if true the loop ends.

An EXIT statement also terminates the loop and skips to the end.

Loop while condition is true
WHILE condition / W.
WEND / WE.

The WHILE loop allows looping with a condition evaluated at the beginning of each iteration.

First, evaluates the condition. If false, skips the whole loop to the end. If true, executes the
statements between WHILE and WEND and returns to the top to test the condition again.

13

An EXIT statement also terminates the loop and skips to the end.

Graphic and Sound Statements

Set color number
COLOR num / C.

Changes the color of PLOT, DRAWTO and the line color on FILLTO to num.

Draws a line
DRAWTO x, y / DR.

Draws a line from last position to the given x and y positions.

Sets fill color number
FCOLOR num & FC.

Changes the filling color of FILLTO operation to num.

Fill from line to the right
FILLTO x, y / FI.

Draws a line from last position to the given x and y position, using COLOR number, and for
each plotted point also paint all points to the right with the FCOLOR number until a point with
different color than the first.

Sets graphic mode
GRAPHICS num / G.

Sets the graphics mode for graphics operations. See Atari Basic manual for a list of graphics
modes, sizes and number of colors.

Plots a single point
PLOT x, y / PL.

Plots a point in the specified x and y coordinates, with the current COLOR number.

Sets displayed color SETCOLOR num, hue, lum / SE.

Alters the color registers so that color number num has the given hue and luminance.

Adjust voice sound parameters
SOUND voice, pitch, dist, vol / S.
SOUND voice
SOUND

Adjust sound parameters for voice (from 0 to 3) ot the given pitch, distortion and volume.

14

If only the voice parameter is present, that voice is cleared so no sound is produced by that voice.

If no parameters are given, clears all voices so that no sounds are produced.

Device Input and Output Statements

Binary read from file
BGET #iochn,address,len / BG.

Reads length bytes from the channel iochn and writes the bytes to address.

For example, to read to a byte array, use “ADR(array)” to specify the address.

On any error, ERR() will hold an error code, on success ERR() reads 1.

Binary read from file
BPUT #iochn,address,len / BP.

Similar to BPUT, but writes length bytes from memory at address to the channel iochn.

On any error, ERR() will hold an error code, on success ERR() reads 1.

Close channel
CLOSE #iochn / CL.

Closes the input output channel iochn, finalizing all read/write operations.

On any error, ERR() will hold an error code, on success ERR() reads 1.

Note that it is important to read the value of ERR() after close to ensure that written data is
really on disk.

Reads bytes from file
GET #iochn, var, . . .

Reads one byte from channel iochn and writes the value to var.

var can be a variable name or an array position (like “array(123)”)

In case of any error, ERR() returns the error value.

Input variable or string from file
INPUT #iochn, var / IN.

Reads a line from channel iochn and stores to var.

If var is a string variable, the full line is stored.

If var is a numeric variable, the line is converted to a number first.

On any error, ERR() will hold an error code, on success ERR() reads 1.

15

Opens I/O channel
OPEN #ioc,mode,ax,dev / O.

Opens I/O channel ioc with mode, aux, over device dev.

To open a disk file for writing, mode should be 8, aux 0 and dev the file name as “D:name.ext”.

To open a disk file for reading, mode should be 4, aux 0 and dev the file name as “D:name.ext”.

See Atari Basic manual for more documentation in the open modes, aux values and device names.

On any error, ERR() will hold an error code, on success ERR() reads 1.

Print strings and numbers to a file
PRINT #iochn, . . . / ?

Same rules as the normal print, but all the output is to the channel iochn. Note that you must
put a comma after the channel number, not a semicolon.

On any error, ERR() will hold an error code, on success ERR() reads 1.

Note that you can only read the error for the last element printed.

Outputs one byte to the file
PUT #iochn, num / PU.

Outputs one byte num to the channel iochn.

On any error, ERR() will hold an error code, on success ERR() reads 1.

Generic I/O operation
XIO #iochn, cmd, aux1, aux2, dev / X.

Performs a general input/output operation on device dev, over channel ioc, with the command
cmd and auxiliary bytes aux1 and aux2.

Note that the arguments of XIO statements are in different order than Atari Basic, for consistency
with other statements the iochn is the first argument.

Example: to delete the file “FILE.TXT” from disk, you can do:

1 XIO #1, 33, 0, 0, "D:FILE.TXT"

General Statements

Line comments
’ / .

Any line starting with a dot or an apostrophe will be ignored.

16

Defines array with initial values
DATA arr() [type] = n1,n2, / DA.

This statement defines an array of fixes length with the values given.

The array name should not be used before, and type can be “BYTE” (abbreviated “B.”) or
“WORD” (abbreviated “W.”).

If you end the DATA statement with a comma, the following line must be another DATA
statement without the array name, and so on until the last line.

Example:

1 DATA big () byte = $12 ,$23 ,$45 ,
2 DATA byte = $08 ,$09 ,$15

Note that the array can be modified afterwards like a normal array.

Decrements variable by 1
DEC var / DE.

Decrements the variable by 1, this is equivalent to “var = var - 1”, but faster.

Allocate an array
DIM arr(size) [type], . . . / DI.

The DIM statement allows defining arrays of specified length.

The type must be “BYTE” (abbreviated “B.”) to define a byte array, with numbers from 0 to
255, or “WORD” (can be left out) to define an array with integers from -32768 to 32767.

If the name arr ends with a $ symbol, this defines a string array, and you can’t specify a type.

The size of the array is the number of elements, the elements are numerated from 0, so that an
array of size 10 holds values from 0 to 9.

You can DIM more than one array by separating the names with commas.

The array is cleared after the “DIM”, so all elements are 0 or an empty string.

Ends program
END : Ends program.

Terminates current program, only valid at end of input.

Increments variable by 1
INC var

Increments the variable by 1, this is equivalent to “var = var + 1”, but faster.

17

Pauses execution
PAUSE num / PA.

Stops the current execution until the specified time.

num is the time to pause in “jiffies”, this is the number of TV scans in the system, 60 per second
in NTSC or 50 per second in PAL.

A value of 0 pauses until the vertical retrace, this is useful to synchronize to the TV and get
fluid animations.

Floating point statements

Those statements are only available in the floating point version.

Sets “degrees” mode
DEG

Makes all trigonometric functions operate in degrees, so that 360 is the full circle.

Sets “radians” mode
RAD

Makes all trigonometric functions operate in radians, so that 2pi is the full circle.

This mode is the default on startup.

Low level statements

Those are statements that directly modify memory. Use with care.

Writes a 16bit number to memory
DPOKE address, value / D.

Writes the value to the memory location at address and address+1, using standard CPU order
(low byte first).

Copies bytes in memory
MOVE from, to, length / M.
-MOVE from, to, length / -.

Copies length bytes in memory at address from to address to.

The MOVE version copies from the lower address to the upper address, the -MOVE version
copies from upper address to lower address.

18

The difference of the two statements is in case the memory ranges overlap, if from is lower in
memory than to, you need to use -MOVE, else you need to use MOVE, otherwise the result will
no be a copy.

MOVE a, b, c is equivalent to:

1 FOR I=0 to c-1
2 POKE b+I, PEEK(a+I)
3 NEXT I

but -MOVE a, b, c is instead:

1 FOR I=c-1 to 0 STEP -1
2 POKE b+I, PEEK(a+I)
3 NEXT I

Writes a byte to memory
POKE address, value / P.

Writes the value (modulo 256) to the memory location at address.

19

	FastBasic - Fast BASIC interpreter for the Atari 8-bit computers
	Introduction
	First Steps
	Compiling the program to disk
	About the syntax
	Expressions
	Numeric Values
	Numeric Variables
	Numeric Operators
	Boolean Operators
	Arrays
	String Values
	String Variables
	Standard Functions
	Floating Point functions
	String functions
	Low level Functions

	List of statements
	Console Print and Input Statements
	Control Statements
	Graphic and Sound Statements
	Device Input and Output Statements
	General Statements
	Floating point statements
	Low level statements

