
EXTENDED BASIC GAME DEVELOPERS PACKAGE
“Encruzado”
by Harry Wilhelm

06/04/18

For all its strengths, Extended BASIC has two major weaknesses. It cannot utilize the full power of the
9918A video processor, and programs generally run slowly. This package contains two stand alone
applications that can also be used together to address these shortcomings, making it possible to produce
arcade quality games with XB.

XB256

XB256 is a collection of assembly language subroutines for Extended BASIC that unlocks the graphics
and sound capabilities of the TI-99/4A computer. No knowledge of assembly language is required to
use XB256.

XB256 lets you select from two independent screens. Screen1 is the screen normally used by Extended
BASIC and it is accessed with the usual XB statements. Screen2 lets you define 256 characters, more
than twice the 112 available in XB. Additionally, you can use up to 28 double sized sprites using the
character definitions available to Screen1. You can toggle between the two screens as desired and
preserve the graphics on each screen. When using Screen2 there are assembly subroutines that replace
CHAR, CHARPAT, COLOR, and CHARSET. All other screen access in Screen2 is by the usual
Extended BASIC statements such as PRINT, SPRITE, ACCEPT, etc.

Scrolling routines allow you to scroll screen characters left, right, up, or down. You can specify a
window area for scrolling and leave the rest of the screen unchanged. Other routines let you scroll
smoothly one pixel at a time to the left, right, up or down. Plus there is a text crawl that gives an effect
similar to the STAR WARS title screen.

There are subroutines that let you hilight text, set the sprite early clock, print in any direction on the
screen using all 32 columns, read from or write to the VDP ram, write compressed strings or sound
tables to VDP ram, and play a sound list. A disk catalog subroutine has been added.

A utility (COMPRESS) is included that lets you save selected areas of VDP memory as compressed
strings that can be merged with your program. This lets you save character definitions, sound tables,
screen images, etc. in a more compact form that can be loaded virtually instantaneously.

There are two utilities (SLCOMPILER and SLCONVERT) that convert the CALL SOUNDs in an XB
program to a sound table that contains music and sound effects in a form that can be loaded directly
into VDP memory. This is much more compact, and your XB program can do other tasks while a sound
list plays. After a sound table is loaded into VDP RAM you can play any sound list in it using CALL
LINK(“PLAY”,address) When a sound list has started it will play automatically while your XB
program does other things. Also, there is a second player that can play a different sound list
simultaneously with the first. This way you can have background music playing and add sound effects
without interrupting the background music.

With XB256 a fast paced arcade style game would not be possible without compiling, but a tantalizing
possibility would be to have an autoloading large adventure game much longer than 24K using multiple
program segments. XB256 can provide much richer graphics plus sound tables. Compressed data
statements can load new graphics almost instantly. Put it into DSK1 where it autoloads, starts XB256
and then runs the initial segment of the program. "Who's behind the Mexican UFO's?" comes to mind,
although that used Missing Link and bit mapped graphics.

EXTENDED BASIC COMPILER

The Extended BASIC compiler lets you take advantage of the simple program development offered by
Extended BASIC, then make an end run around the speed limitations. The goal was to implement
Extended BASIC as fully as possible within the time limits of the programmer and the memory limits
of the machine. There are limitations and you will probably need to adjust your programming style a
bit, but in general, all the major features of XB are supported. You can concentrate on writing and
testing a program in the XB256/Extended BASIC environment. When the program has been perfected
it can then be compiled into an equivalent code that will run at a speed approaching assembly language.
The average Extended BASIC program will run at least 30 times faster after being compiled, and
certain operations can run up to 70 times faster.

The compiler has been expanded to include all the XB256 subroutines. Compiling a program that uses
XB256 is no different than compiling a conventional XB program. Write the program in XB or in
XB256, test it until it is perfected, then use the compiler to get a huge performance increase. Some disk
access has been added to the compiler – you can have up to three Display, Variable type files open at a
time. XB style IF/THEN/ELSE statements can now be used. The compiler still has limitations
regarding named subprograms, use of integer arithmetic, no trig functions, no nested arrays, etc. But if
you work within its limitations you can create arcade quality games.

If you are developing a program using XB256 or XB that you intend to compile for increased speed,
then you should keep in mind the limitations of the compiler. It is much easier to write code that takes
those limitations into account rather than having to rewrite the code and debug it twice. Refer to the
compiler manual before you start writing so you don't get stuck having to make revisions.

Although XB256 and COMPILER256 are designed to complement each other, remember that they are
stand alone utilities. Programs developed using XB256 do not have to be compiled. If the execution
time is adequate they will run fine in XB, and you would have access to floating point math, disk
access, etc. Similarly, XB programs do not have to use XB256; they can still be compiled for the
increased speed. Also, standard TI BASIC programs can be compiled.

SETTING UP THE GAME DEVELOPER'S PACKAGE

The package consists of one folder (ENCRUZADO) with a sub-folder containing the documentation:

 ENCRUZADO contains the program files used by the Game Developer's Package. It is designed to be
used with Mike Brent's Classic99 emulator which is an excellent tool for development work. It can read
and write windows format text files so you can easily view compiled programs. Another advantage of
CLASSIC99 is the ability to use CPU overdrive to greatly speed up the computer. Although Classic99
is used to create an XB256 or compiled program, the final product should be compatible with a real TI
system or any other emulator.

DOCS is a subfolder containing the documentation for the game developer's package.

Classic99 can be downloaded from Mike's web site http://www.harmlesslion.com/ or from
http://atariage.com/forums/forum/119-ti-994a-programming/ under TI-99/4A development resources.

Classic99 is the preferred method for running the game developer's package. As received the classic99
folder comes with 3 disks configured: DSK1, DSK2 and DSK3. Put the folder ENCRUZADO into the
classic99 folder alongside DSK1, DSK2 and DSK3.

Then configure DSK1 as shown below. This tells Classic99 to use ENCRUZADO as DSK1. Be sure to
enable “Write DV80 as Windows Text” but do not enable “Write DF80 as Windows Text”. Press “OK”.
You may have to restart Classic99 for the changes to take effect.

You must be using TI Extended BASIC or another Extended BASIC such as RXB.
To select Extended BASIC, click on Cartridge>Apps>Extended BASIC

http://www.harmlesslion.com/
http://atariage.com/forums/forum/119-ti-994a-programming/

Using the Game Developers Package

Considerable effort has gone into revising the game developers package so it is as easy to use as
possible, and there have been performance improvements as well.

If you have never used the compiler it can be a bit intimidating. - 6 different files are used!

FILENAME original XB or BASIC program
FILENAME-M the same XB program saved in merge format
FILENAME.TXT Assembly source code created by the compiler
FILENAME.OBJ Assembly object code created by the assembler
FILENAME-E Compiled program ready to run in EA5 format
FILENAME-X Compiled program ready to run in an XB loader

Wow, that sure is a lot to keep track of, but don't let it scare you off. Before going into the details, let's
give the game developer's package a test drive. HELLO is a simple XB demo program that is on DSK1
as part of the package. Let's see how easy it is to compile it.

Classic99 should be set up as described above. Then start up Classic99 and choose XB. The main menu
appears. Press the space bar once for EXTENDED BASIC and press Enter. You are prompted OLD
DSK. Make the filename OLD DSK1.HELLO and press enter. List the program and then run the
program to see what it does and remind yourself how slow XB is. Break the program with F4. Go to
Options>CPU throttling>CPU overdrive. Then type SAVE and press enter at each prompt. (22 times
total – stop when the prompt is RUN). Reset the CPU speed to normal and then press enter one final
time to run the program. Notice the speed improvement - about 30x faster! (In the docs, HELLO.GIF is
an animated GIF showing this process. Appendix B in this manual is a listing of HELLO.

What just happened? Well, without having to know anything about assembly language you have just:
Loaded an XB program, tested it, saved it, saved it in merge format, compiled the merge format XB
program into assembly source code, assembled the source code into assembly object code, loaded the
object code, saved the compiled program in EA5 format, saved the compiled program in an XB loader,
and ran the compiled program! All by pressing the Enter key!

Now for the details. There is a lot of information below, and most of it is not all that important to the
user. Basically, once you have saved an XB256 or Extended BASIC program you just have to keep
pressing Enter until the program has been compiled.

The MENU program

The menu program is the heart of the game developer's package. It lets you easily select and load any
component of the package. If you are holding down any key when the menu program starts it will
CALL INIT, exit the loader, do a NEW, and return to the XB command line.

The programs loaded by the menu pass information to each other using a mailbox at >FFE8, an unused
area of memory. Using the file name in the mailbox, autocomplete prompts are provided whenever an
input is expected, so each program can seamlessly interact with the next. Saving, compiling,
assembling, and loading are simply a matter of pressing Enter every time you are asked for a prompt,
but you always have the option to change the filename if desired.

Navigate the menu with the up/down arrow keys or the space bar. Press Enter to select an option. The
five options are:

XB256 – Loads XB256, does a NEW, activates XB256 and goes to the XB command line. Detailed
information on how to use XB256 can be found in the documents.

EXTENDED BASIC – Does a NEW and goes to the XB command line.

Both the above options have an autocomplete routine running in the background. This routine assumes
that you will want to load a program, edit and test it, then save it as a program, then as a merge file, and
then return to the main menu.

At startup, the default prompt is OLD DSK. If a filename is in the mailbox the prompt is OLD
DSKn.FILENAME. You can press Enter if you like the filename, or change the filename and press
Enter, or press F4 to bypass the prompt. When you enter a filename here the XB/XB256 program is
loaded and the filename is sent to the mailbox. There is no “undo” on the autocomplete routine. Once
you press Enter, F3 or F4 you cannot return to that option. At the first prompt, OLD DSK, you can turn
off autocomplete by pressing F3.

Work on the program and test until you are satisfied. Type SAVE. When the autocomplete routine sees
the four capital letters “SAVE” it will plug in the filename: SAVE DSKn.FILENAME or SAVE DSK if
the mailbox is empty.

As before, press Enter if you like the filename, change it and press Enter, or press F3 or F4 to bypass
the prompt. (This would be a good time to choose CPU overdrive in Classic99)

Then SAVE DSKn.FILENAME-M,MERGE is suggested. By now you know the drill: press Enter,
change the name and press Enter, or press F4.

Then RUN DSK1.LOAD is suggested. Enter returns to the menu, or press F3 or F4 stay in XB256/XB.

COMPILER – Runs the Compiler. Be sure to carefully read the documentation on the Compiler so
you know its capabilities and limitations. When it runs, the compiler prompts are:

XB merge file to compile? If you saved an XB256 or XB program earlier that file will be suggested
with a -M extension. Otherwise enter a filename.
Assembly file to create? .TXT will replace -M in the file name you entered above. You can change
the filename if you wish.
Using Asm994a? N. If N then the followup question is Runtime routines on DSK1. (Normally they
would be on DSK1. If you are using Asm994A, they should be copied to your working disk as
described in the compiler manual.) If using Asm994a then press Y and Enter.
Put runtime in low memory? N This gives you the option of putting the runtime routines in low
memory.. You should only choose this option of the program is too large to fit in high memory. If there
is room for them in high memory the entire process of compilation is simplified.
Proceed? Y Press Enter to compile or N and Enter to redo.

The screen should look like this just before you press Enter to proceed:

After you press <Enter> the compiler will analyze each line of the XB program and create an assembly
language source code file.

When the compiler is finished the main menu will appear.

ASSEMBLER – Runs the Assembler. This has been modified from the Funnelweb assembler to be a
stand alone program. If you have run the compiler before loading the assembler then the filenames
generated by the compiler are filled in for you; otherwise you will have to fill them in yourself.

Press Enter to assemble or F8 if you need to redo the file names..

If the assembly process goes well you get this message:
0000 ERRORS
Press ENTER or QUIT
After the assembly process is complete, Enter will load and run the menu program. Some of the
modified XB's such as RXB or XB2.7 may not return properly to the menu, or if they do there may be
black letters on a black background. If this happens you should Quit, press a key and select RXB. The
contents of the mailbox are preserved if you do this.

There is a quirk in Classic99 that you should be aware of. When running the TI Assembler with CPU
overdrive, once the assembly process has started there are no screen updates until the assembler is
finished. You probably won't see the “ASSEMBLER EXECUTING” message. Don't assume there has
been a crash, just wait until the assembler has finished its job. You will know this when you see “0000
ERRORS, Press ENTER or QUIT”

CROSS ASSEMBLERS

The assembler that comes with the Game Developer's Package is adapted from the assembler that was
included in the TI Editor/Assembler package. It works fine and is quite useable, but it does take some
time to assemble, especially for a large program.

If you want to speed up the development process you should take the time to learn how to use a cross
assembler. Fred Kaal's XA99 is one possibility; xas99 by RalphB is another. I know nothing about
either of these, so someone else would have to describe how to use them.

The only cross assembler I have first hand knowledge of is Asm994a, which is part of the Win994a
package. Asm994a is my preferred method for assembling a compiled program because the assembly
process happens almost instantaneously. I have devoted a few pages at the end of the compiler
documentation to describe how to use Asm994a.

LOADER – When you select LOADER you get these options:

USE 24K RAM – This runs the Loader. CLOADER uses the assembly loader from the EA cartridge
instead of the GPL loader in the XB cartridge, so it is much faster. The loader prompts you:
Enter filename to be loaded: The filename in the mailbox will be suggested with the .OBJ extension
To load the file, press Enter, or change or type in a new filename and press Enter.

After the file has been loaded three prompts are automatically suggested in the XB command line:
CALL LINK(“EA5”,”DSKn.FILENAME-E”) Press Enter to save the compiled program in EA5
format, or press F3 to skip this.

SAVE DSKn.FILENAME-X Press Enter to save the compiled program embedded in an XB loader,
or press F3 to skip this.

RUN (If Classic99 is in CPU overdrive you should return to normal speed) P.ress Enter to run the
compiled program, or press F3 to skip this.
Autocomplete has no “undo.” Once you press Enter or F3 you cannot return to that option.

Autoprompt to save in EA5 format

Autoprompt to save in an XB loader

Depending on the length, the EA5 program will be saved in two to four files(-E,-F,-G,-H).. The XB
program will always be saved in one file (-X) unless you selected low memory runtime routines, in
which case there will be two files (-X,-Y). If you copy them, be sure to copy all the files.

USE 32K RAM gives you these options:
I

LOAD and TEST in XB prompts you for a filename to load. This uses the slow GPL assembly loader
built into XB. You can test the program but cannot save it.

LOAD, SAVE, TEXT in MiniMemory gives you this screen:

Follow those steps to start a loader program that works the same as the loader described above.

After test running the compiled program you will probably want to do some more work on the original
XB program. Just Quit or do a “warm reset” in Classic99 and select XB again. The file you have been
working on is still in the mailbox and will be suggested as the prompt when you select XB256 or XB.

IS THERE ENOUGH MEMORY?

The loader will report how many bytes of memory are left when the compiled code is embedded in an
XB loader. There are 56 additional bytes if you run the program as EA5. Although it is not actually part
of the compiled program, this memory is used for string variables and the subroutine stack, and you
must be sure there is enough room. Unfortunately, there is no hard and fast rule to know how much
memory you need. It all depends on how many string variables you use and how long they are. The
compiler will do a “garbage collection” as necessary to clean out redundant string variables, just like
XB does but faster. Most of the suggestions for saving stack space in the XB256 manual also apply to
compiled code.

If you run short of memory, the compiler gives you the option to put the runtime routines into low
memory, which frees up around 7K of memory. This option requires the MiniMemory cartridge for the
loader, and two files are created when saving as an XB program. Since this process is not quite as
simple as the normal procedure, it should only be used if there is no other way.

 Appendix A

Files used in XB Game Developer's Package:
LOAD menu program

XB256
XB256HM
COMPRESS
SLCOMPILER
SLCONVERT

(all are used by XB256)

COMPILER
ASSEMBLER
CLOADER
MB
MM32
MM32ASSM.OBJ
RUNTIME1.TXT
RUNTIME2.TXT
RUNTIME3.TXT
RUNTIME4.TXT
RUNTIME5.TXT
RUNTIME6.TXT
RUNTIME7.TXT
YRUNTIME1.TXT
SINE255
SOUNDLIB.TXT
XB32

(all below are used by the compiler)
assembler from Editor/Assembler
loads compiled and assembled program
mailbox used to pass info to MiniMemory
low memory loader for MiniMemory
assembly support for MM32
XB routines (runtime)
XB routines (runtime)
XB routines (runtime)
XB256 routines (runtime)
StarWars scroll (runtime)
CHSETD routines (runtime
disk access routines (runtime)
runtime routines for old BASIC compiler
table of sine values
crash and chime sounds from EA manual
low memory loader for Extended BASIC

APERTURE
256DEMO
256DEMO2
HELLO
8QUEENS

(demo programs)

Appendix B

Listing of “HELLO”

5 ! HELLO WORLD
10 A$=" Hello World!"
15 CALL CLEAR
20 FOR ROW=1 TO 24 :: FOR COL=1 TO 32
30 R=ROW :: C=COL
40 FOR I=1 TO LEN(A$)
50 CALL HCHAR(R,C,ASC(SEG$(A$,I,1)))
60 C=C+1 :: IF C<33 THEN 100 :: C=1 :: R=R+1 :: IF R<25 THEN 100 ::
R=1
100 NEXT I
110 NEXT COL :: NEXT ROW
120 GOTO 20

Appendix C – Customizing the menu program

Turn off autocomplete in XB and XB256

You can temporarily turn off autocomplete by pressing F3 at the OLD DSK prompt. If you find that
you prefer to not use use the autocomplete feature at all, it can be permanently turned off.

For Extended BASIC, remove the underlined/highlighted text in line 180 of LOAD
180 CALL LOAD(-7,3,2):: CALL LOAD(8192,255,152):: CALL LINK("X"):: CALL
LINK("ACON"):: END

For XB256, remove the underlined/highlighted A in line 10 of XB256 so it is CALL LINK(“XB256”)
10 CALL INIT :: CALL LOAD(8192,255,152):: CALL LINK("X"):: CALL LINK("XB256A"):: END

Setting the defaults in the menu program

You can change two of the start up defaults in the menu program. In line 100, D tells the compiler the
disk number where the runtime routines will be found. A positive number will be used as the disk
number prompt; the default is 1. If it is -1 then the compiler assumes you are using Asm994a.

100 CALL CLEAR :: CALL INIT :: CALL PEEK(-8,D,R):: IF D=0 THEN D=1

When the menu program first runs the default option is XB256, but you can make it Extended BASIC.
In line 101, R sets the default row at startup. R=1 is XB256; R=2 is Extended BASIC.
101 IF R=0 THEN R=1 :: CALL LOAD(-8,D,R)!D=DSK#,R=1:XB256;R=2:XB

