
 Half Bit Map Support for C99.
 And how to Use it.
 .
 The software in this package is all Public Domain, written
 by Bruce Harrison. All of the routines are designed to be
 called from C99 programs, using the C99 compiler and support
 files written by Clint Pulley. The Half Bit Map mode runs quite
 well on TI-99/4A computers, but may or may not work on Geneve
 (Myarc 9640) computers, or on TI-99/4A computers that use an 80
 column card. The C99 system is Fairware, and users should send
 some contribution to Clint Pulley. His address is in the Manual
 that comes with C99..
 .
 Why Use Half Bit Map?.
 .
 The Half Bit Map mode could more properly be called the
 Enhanced Graphics Mode. Like the "normal" Graphics mode, which
 is the TI's "default" mode, the screen image consists of 24 rows
 of 32 8*8 pixel character positions. In that normal mode, color
 combinations may be assigned only to sets of 8 character
 definitions, so that for example the "H" through "O" will all be
 affected by changing one byte in the color table. In Half Bit
 Map, each character definition has its own eight byte color
 definition. Thus not only can an individual character's color
 be changed, but a character can have different colors for each
 of its eight rows. Obviously this opens up a world of possible
 ways to use the TI for games and such. When you add the
 capability for up to 32 sprites that move all by themselves,
 you've got a really powerful tool. Some time back, we released
 a set of object modules for the Assembly Programmer to take full
 advantage of Half Bit Map, but those were not "callable" from
 the C99 language. In answer to a request from Vern Jensen of
 Pasadena, CA, we have adapted and expanded those routines for
 use by C99 programs. The routines are collected into three
 separate libraries, called CHBSUB/O, CHBINP/O, and CHBSPR/O.
 CHBSUB/O is the entry point for Half Bit Map from C99. It
 includes routines to move in and out of Half Bit Map mode, into
 the normal Graphics mode, or back to C99's default Text Mode.
 It includes a number of utility routines to display strings,
 numbers, or characters on the Half Bit Map screen, and allows
 the programmer full use of the enhanced colorizing capabilities.
 CHBINP/O can't be used without CHBSUB/O. It provides the
 ability to take inputs into strings or numeric variables from
 the Half Bit Map screen. CHRSPR/O also can't be used without
 CHBSUB/O, but it adds full-blown Sprite capability like that
 available in Assembly programs using the normal Graphics mode..
 .
 What's on the Disk?.
 .
 Lots of Stuff! In addition to the three libraries in the
 form of D/F 80 object files, there are the corresponding source
 files with full annotation, so the programmer can see just
 exactly what each routine does, and how it does it. There are
 small files for #include lines in your C source, so that all the
 necessary REFs will be inserted for you by the C Compiler.
 There are also two demo programs that use most of the routines.
 They're included as C99 Source (CHB/C & CHI/C), as the resulting
 Assembly Source (CHB/S & CHI/S), as Object Files (CHB/O &
 CHI/O), and as E/A Option-5 Program files (CHB1/CHB2 & CHI). To
 give yourself a feel for this stuff, try running CHB1 and CHI
 from E/A Option-5. Here's what you'll see:.
 .
 When CHB1/2 starts, the program will immediately switch
 your computer to the Half Bit Map mode. The screen will be
 white with a dark blue edge. Next the program will put a border
 all the way around the screen two characters wide in Cyan. Then
 it will put some strings on the screen in various locations.
 Certain characters will have their colors changed. All of the
 upper case letters will be white on magenta. The numbers 1
 through 3 will be in "rainbow" colors, and the "0" will be in
 white on dark red. Finally it will put five magnified Sprites
 on the screen and set four of them in motion. All of that will
 happen very quickly indeed, so it will appear to have happened
 all at once. Now just watch for a while. From time to time the
 cyan sprite will "wink" when all four of the others are on the
 same screen row. When the four moving sprites all converge at
 the center of the screen, the yellow "C" will turn around left
 to right! As you continue watching, when next the Sprites

 converge at the middle of the screen, the yellow "C" will
 reverse again, back to normal. You'll notice a line near the
 bottom of the screen that says "press enter to exit". Don't! At
 least not yet. First press the space bar. You'll see the
 number 1 (rainbow color) appear in row 24, followed by "press
 ENTER to exit", where ENTER is in white on magenta, and the
 screen will be scrolled up by one row. Each time a key other
 than ENTER is pressed, the screen will scroll again, and the
 number that appears will increment. Notice that during the
 scroll, the sprites continue their motion, and that the scroll
 happens very quickly. There's actually a 2/60th second delay
 built into the program to prevent the scrolling from "running
 away" from you. As the screen scrolls, the five sprites
 continue as before, with the C reversing each time they all
 converge. When you've seen enough, press ENTER to get out of
 the program. The RE-RUN option will not appear, and you'll be
 back under E/A control..
 .
 CHI demonstrates the input routines from the CHBINP/O
 library. These include an ACCEPT AT type routine for strings,
 another for numbers, and two single-key input routines that echo
 the key struck to the screen. The ACCEPT AT type routines
 include full editing capability, so that Function-1 will delete
 the character under the cursor, Function-2 will initiate insert,
 Function-3 will erase the field, Function-S moves the cursor to
 the left, and Function-D to the right. Function-9, Function-8,
 Function-E snd Function-X will all exit the routine, as will
 ENTER..
 .
 That's a lot to absorb all at once, so we're going to break
 it down for you into individual routines, and explain what each
 does, how to call it from your C99 code, and what parameters get
 supplied or returned. We'll start with the routines in CHBSUB:.
 .
 CHBSUB/O Routines.
 .
 sethb() This needs no parameters. It blanks the screen,
 puts the computer into Half Bit Map, saves the existing
 character set, clears the Half Bit Map screen, sets all
 character colors to black on white, then unblanks the screen and
 returns to your C99 code. You'll then have a blank white screen
 with a dark blue border..
 .
 hbcc(fc,bc) This changes the default colors for the Half
 Bit Map screen. Foreground color becomes fc, background color
 becomes bc. This may be used either before or after sethb(), as
 it changes both the present color schemes for all Half Bit
 characters and the default colors used by sethb(). This can
 also be used to "undo" all existing colorizings, setting all
 characters to fc and bc colors..
 .
 setgm() This too needs no parameters. It blanks the
 screen, puts the computer in "normal" graphics mode, clears the
 graphics screen, resets the original character definitions, then
 unblanks to a green screen with all character colors set to
 black on green, as is normal for the graphics mode from E/A..
 .
 settm() Ditto no parameters. This blanks the screen,
 clears the screen, resets characters, etc. and puts you back
 into the default C99 condition with a 40-character Text screen
 in white on dark blue. This and the above are designed to
 allow your program to mode-switch gracefully, but you must first
 use sethb() before using either setgm() or settm()..
 .
 hbstr(row,col,"Quoted String") Here we need parameters.
 All three must be provided. Row and Col may be just numbers or
 INT variables. Range for Row is 1 through 24, and for Col is 1
 through 32. The string should be contained in quotes as shown.
 If the string contains the \n, the next part will be displayed
 on a new line. The routine checks the validity of Row, Col, and
 won't display anything beyond the end of the screen. If the
 string would extend beyond the screen, it will be truncated to
 fit..
 .
 hbchr(row,col,char) Places a single character whose ASCII
 value is char at row, column..
 .
 hbcls() No parameters. This clears the screen in HB mode..

 .
 hbclf(row,col,rpts) This clears an area of the screen
 starting at row, col, and extending rpts locations from there..
 .
 hcolor(char,fc,bc,rpt) Changes the color scheme for one or
 more characters starting at char to foreground color fc and
 background color bc. Does the number of successive colors given
 by rpt. For example, hcolor('w',16,13,4) would color the lower
 case w, x, y, and z to white on dark green. All four parameters
 must be supplied, even if the fourth is 1..
 .
 hrbow(char,rpt,fc1,bc1,fc2,bc2, ... fc8,bc8) Changes the
 color scheme of characters starting with char and extending rpt
 characters with a color scheme specified by eight pairs of
 foreground/background colors. Colors are given in the scheme as
 used in Basic or Extended Basic. Each number as indicated by
 fc1,bc1, etc. must range from 1 through 16. The colors fc1,bc1
 color the top row of the character, advancing downward to
 fc8,bc8, which color the bottom row. This is useful for giving
 characters different colors for each row of the character. See
 an example in CHB/C..
 .
 calchr(char,"pattern string") This works like CALL CHAR in
 Basic or Extended Basic. The pattern string may be up to 16
 characters of hex, just as in Basic. If the string is shorter
 than 16 characters, the rest of the character pattern will be
 set to zeros..
 .
 hbscrl() No parameters. This moves everything currently
 on the screen up one row, and blanks row 24. The contents of
 row 1 disappear..
 .
 hbvchr(row,col,char,rpt) This places char on the screen
 starting at row, col, and repeating downward for rpt times.
 Like the Basic CALL VCHAR, this will wrap around from the end of
 the screen to the screen origin and continue repeats from there..
 .
 hbhchr(row,col,char,rpt) This works the same as the CALL
 HCHAR in Basic. Like the one above, this wraps around from the
 bottom to the top of the screen..
 .
 hbdint(row,col,integer) This places a signed integer
 quantity on screen in decimal notation. Integer can be either a
 number or the name of an INT variable. The number as displayed
 will range from -32768 through +32767. For positive numbers,
 there will be no space left before the digits, therefore either
 the first numeric character or the - sign will appear at row,
 col..
 .
 That's it for the CHBSUB routines. These should allow you
 to do all sorts of displaying on the Half Bit Map screen. Next
 we move to the Sprite services..
 .
 CHBSPR/O Routines.
 .
 sprite(num,ypos,xpos,char,color,yvel,xvel) This requires a
 lot of parameters, so let's take them one at a time. num means
 a number from 0 through 31, as there are 32 sprites available at
 any time. They should be assigned in order, from 0 through the
 number needed. The parameter ypos is in dot-row coordinates,
 and may range from 0 through 191. Xpos is the dot-column
 position, and may range from 0 through 255. Char is a character
 number from 0 through 255. The sprites' characters have their
 own definitions separate from the normal screen characters, but
 the normal screen characters' patterns are available for the
 sprites also, unless you change them. Color ranges from 1 to
 16, as for the Basic color schemes. Yvel and xvel, which must
 be included even if both are zero, may range from -128 through
 +127. Putting a sprite with non-zero velocity on screen sets up
 the user interrupt that provides motion. Your program, however,
 must provide some means of allowing interrupts frequently so
 that the sprites will continue moving. See the section of the
 source file CHB/C, in which LIMI 2 and LIMI 0 are included in
 the loop while awaiting a keystroke..
 .
 motion(num,yvel,xvel) Changes the velocities of the sprite
 given by num to yvel, xvel. This works just like the CALL
 MOTION in Extended Basic, except that num ranges from 0 through

 31..
 .
 yposit(num) This is normally used to set an integer
 variable, as for example y=yposit(3) would set variable y to the
 dot-row position of sprite 3..
 .
 xposit(num) Same as above, but reports the dot-column
 position into a variable..
 .
 locspr(num,dot-row,dot-col) Places Sprite identified by num
 at the specified dot coordinates. Doesn't change velocities..
 .
 pattrn(num,char) Sets the character definition of a sprite
 identified by num to the pattern of char. For example if we
 perform pattrn(3,'F'), sprite number 3 will become an upper case
 "F"..
 .
 magnif(maglev) Changes the size of all sprites. the
 parameter may only be 1 through 4. Setting 1 means all sprites
 are just normal size. 2 doubles height and width. 3 and 4 are
 4-character sprites of normal and doubled size..
 .
 revmo(num) This is our own unique idea. Just this one
 instruction reverses the motion of sprite indicated by num in
 both horizontal and vertical directions. If either velocity is
 zero or -128, that won't change. (-128 is a special number,
 which becomes itself again when changed from negative to
 positive by the Assembly code in REVMO.).
 .
 coinc(num1,num2) Reports coincidence of two sprites
 indicated by num1 and num2. Can be used to report into an INT
 variable as in k=coinc(1,2). The variable k will be 1 if the
 sprites are within ten pixels of each other in both row and
 column. Otherwise k will be zero. This could also be used
 without a reporting variable as in if coinc(1,2)
 .
 delspr(num) Deletes the sprite indicated by num and all
 higher numbered sprites. To delete all sprites, use delspr(0).
 Deleting all sprites will also de-activate the user interrupt
 that governs sprite motion..
 .
 rev1(char) Reverses the sprite pattern of char from left
 to right. This works for single character sprites. This
 affects only character patterns used for sprites, not normal
 screen characters..
 .
 rev4(char) Reverses a four-character definition as used
 for a sprite with magnify set to 3 or 4 from left to right. As
 with rev1, this affects only characters used with sprites..
 .
 sprchr(char,"pattern string") This acts like a CALL CHAR
 for one of the characters used for sprites. The pattern string
 may be up to 16 characters of hex notation, just as for normal
 characters. If the string is less than 16 characters, the
 remainder of the pattern will be blank..
 .
 CHBINP/O Routines.
 .
 x=accnum(row,col,clrsig) This routine is normally used to
 input a number into an INT variable. It accepts only six
 characters, because the range of numbers in an INT variable is
 limited to -32768 through 32767. Leaving the field blank will
 put a zero into the variable. Scientific notation is accepted,
 so for example the entry 2.3E2 will result in 230 being placed
 in the variable. The parameter clrsig signals whether the
 field is to be cleared before taking input. If non-zero, the
 routine clears the field. If zero, the field is not cleared, so
 a default entry can be accepted..
 .
 accstr(row,col,maxlen,clrsig,buffer) This accepts a string
 into a buffer initiated as a CHAR array. You must take care
 that maxlen supplied here is one less than the dimension of the
 CHAR array. The string is reported out at buffer in ASCIZ
 format, in keeping with C's practice. A null entry becomes
 simply a 0 byte at the start of buffer. As above, clrsig <>0
 means the field will be cleared before entry is taken. If
 clrsig=0, the field will not be cleared. Both this routine and
 the one above check the validity of Row, Col, etc. They will

 exit without taking input if the parameters are out of range..
 .
 k=hbgkf(row,col) This puts a flashing cursor at row, col,
 then waits for a single keystroke. The key pressed is echoed at
 row, col, and reported to the variable..
 .
 k=hbgk(row,col) Nothing appears at row, col until a key is
 pressed, then the key is echoed at row, col. The key is also
 reported into the INT variable..
 .
 Easy to use.
 .
 The library CHBSUB/O is the main "entry level" for using
 the Half Bit Map mode with your C99 programs. Neither of the
 other two libraries can be used without it. If your program
 needs to take inputs in Half Bit Map, then you'll need to use
 both the CHBSUB/O and CHBINP/O libraries. If you need to use
 sprites in Half Bit Map, then both CHBSUB/O and CHBSPR/O will
 need to be used. If your program needs both input and sprite
 capabilities in Half Bit Map, then all three object files will
 be needed. Here's a quick "how to". Put the files HBSO and
 HBINO on the same disk as your source C99 file, and add the
 SPRIO file if you'll need sprites. Put #include directives in
 your C99 source file for dsk1.hbso, dsk1.hbino, and dsk1.sprio.
 Then put in the instructions as shown above, ending each with ;
 as required. After Compiling and Assembling, use the files
 CHBSUB/O, CHBINP/O (and CHBSPR/O if needed) in the Option 3
 loading process, preferably before loading CSUP. When it's all
 put together by the loader, your finished product will have
 capability you've never dreamed of. We hope you who are doing
 C99 programming will find this product useful. Should you need
 help applying any of this, contact the author:.
 .
 Bruce Harrison.
 5705 40th Place.
 Hyattsville MD 20781.
 U.S.A..
 Phone (301) 277-3467
..

