0’99 #4.0
User’s Manual

Final TI-99/4a Edition #4.0: 01.01.1988

Software and Documentation written and adapted by
Clint Pulley

Contents

INTRODUCTION

USING C’99

2.1 Entering the source program

2.2 Compiling the source program e e e .

2.3 Assembling the compileroutput.

2.4 Loading the program and ibraries

2.5 Running the loaded program

ERROR MESSAGES
LIBRARIES AND INCLUDE FILES

LIBRARY FUNCTIONS

5.1 Functions In CSUP i v i i et s e et e e o e e e n

65.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6

Read one character from the keyboard.
Write one character tothescreen.
Read a line from the keyboard.
Write asiringtothescreen.
Locate the cursor on thesereen.

Exit theprogram.

11

12
12
12

13

5.1.8 Changescreencolor. 14

0.2 Functionsin CFIO: v v v e i 14
521 Openafile. 14

5.22 Closeafile. v e 15

823 Deleteafile. 15

9.2.4 Read one character fromafile. 15

0.2.5 Write one charactertoafile. 16

5.2.6 Read astringfromafile. 16

9.2.7T Writeastringtoafile.. 16

0.2.8 Test forend-offile. 16

5.2.9 Read arecord fromafile. 16

5.2.10 Wrnitearecordtoafile. 17

9.2.11 Set record number, 17

5.2.12 Geterrorcode. v o e ... 17

0.2.13 Rewindafile. 18

6 ASSEMBLY LANGUAGE INTERFACE 19
7 MEMORY UTILIZATION 21
7.1 PADUsage. ittt it i, 21
7.2 Memory Expansion Usage. 21
7.3 VDPRamUsage.., 22

8 STACK USAGE 23
9 PROGRAMMING INFORMATION. 25
10 C99 V4.0 COMPILER SPECIFICATIONS 27
10.1 Features of C’99 (Revised 88/01/01) 27
10.2 Limitations of C'90t i v i i e e e e e e e e e 31

11 REFERENCES. 33

User-supported Software ("FAIRWARE”)

The C’99 compiler, libraries, associated software and documentation are pro-
vided for your use and that of your friends and/or colleagues.

You are encouraged to distribute C'99 freely provided, you charge no more
than media and reasonable distribution costs. All copies of the release diskettes
must include this disclaimer.

If you are using C’99 and find it of value, your donation ($20.00 suggested) to
the author will be appreciated and will help him to support further development
of this product. Contributing users will be placed on a mailing list and advised
of new releases.

If you develop useful applications using C'99 you may market them provided
that the software and documentation acknowledge the use of C'99. The author
would appreciate receiving a complimentary copy of any such programs.

Please address all correspondence to:

Clint Pulley
38 Townsend Avenue
Burlington, Ontario
Canada L7T 1Y6
(416) 639-0583 (home)
Source TI7395
CompuServe 73247,3245
GEnie C.PULLEY

Requests for copies of the C’99 release diskettes should include two formatted
diskettes (SS/SD please) in a mailer and $1.00 for return postage. If you already
have a version of C’99, please indicate the version number in your letter.

This software carries no warranty, either written or implied, regarding its
performance or suitability. Neither the author nor any subsequent distributor
accepts any responsibility for losses which might derive from its use.

(C) 1985-1987 by Clint Pulley

Chapter 1

INTRODUCTION

C’39 158 based on small-C version #1 which was published by Ron Cain in
Dr.Dobb’s Journal No.45, May 1980. Many enhancements were adapted from
Jim Hendrix’s small-C #2. Small-C is a useful subset of the C programming
language. The compiler produces assembler source code as its output. This
code is assembled to produce an object file which is loaded together with all
required libraries and run.

C’99 was designed to run in the Editor/Assembler (cartridge) environment
on the TI-99/4A computer. Since a number of Extended Basic loadable Edi-
tor/Assembler ”simulators” are now available, this version of C’99 has been
modified to be useable with these products. The compiler and generated pro-
grams have been run successfully with FUNLWRITER V 3.0 and BEAXS.

C'99 has these features:

o It supports a subset of the C language.

o Most of the compiler 1s coded in C'99.

e It is syntactically identical to standard C.

¢ It produces assembler source code rather than an object file.

e It is a stand-alone single pass compiler.
It does its own syntax checking and parsing.

e It can compile itiself.

Although C’99 lacks many of the features of standard C systems and pro-
duces code which is less than optimal, it is, in the opinion of the author, a

worthwhile addition to the software repertoire of the TI-99/4A computer. For
the first time a structured language with a true compiler is available to TI
users. C’99 is sufficiently powerful for the development of utilities, text proces-
sors, database systems and games. Since introduction of C’99 over two years
ago, many useful programs have been written by users of this language.

Extensive testing of version #4.0 by the author and several advanced C'99
users has not revealed any glaring errors. If you find bugs or wish to suggest

improvements, please drop the author a line or leave a message on The Source
(T17395), Compuserve (73247,3245), or GEnie (C.Pulley).

C’99 was developed on a 1983 (black) TI-99/4A with 32K Memory expan-
sion, TI (later Myarc) disk controller, two SS/SD drives, RS232 interface and
a Roland printer. The final changes for version #4 were developed on a Myarc
9640 computer in 99/4A emulation mode. The Editor/Assembler software envi-

ronment was used for all software development. All code was written or adapted
by Clint Pulley.

This manual assumes a knowledge of standard C or the avallability of a
suitable reference. The file C99SPECS, found on the release diskette, identifies
the features of C which are available in C’99.

Chapter 2

USING C’99

2.1 Entering the source program

Input to the compiler must be a DISplay/VARiable-80 disk file or (for test
purposes) the console keyboard. The standard TI editor is normally used for

this purpose. If TI-Writer is preferred, be sure to save the source program with
the Print File option to avoid getting a line of TAB-data at the end of the file.

2.2 Compiling the source program

From the Editor/Assembler menu, select the Load Program File option. Just
press Enter or type in DSKx.UTIL1, where x is the diskette drive containing

the compiler disk. When the compiler has been loaded it will identify itself and
ask about a number of options. The questions asked are:

Include ¢-text? [n]

This provides the option of including the C’99 source code as comments in
the output file. If your response is y or Y each line of C source will appear in the
output file preceded by an ”*” asterisk. This option should not be selected for
large programs as it will result in a very large output file. The default response
(n) will result from pressing the enter key.

Inline push code? [n]

The C’99 compiler normally generates a subroutine branch to push a value
onto its stack. This results in fewer instructions being generated, but execution

speed suffers slightly. If maximum performance is required, reply with y or
Y. This will cause the compiler to generate the two instruction push sequence

inline.

The compiler will then prompt for the input and output filenames. In each
case, respond with the full filename (in upper or lower case). If C’99 is unable
to open a file it will display "Bad filename try again” and prompt for another
name. If the response is a null-name (pressing enter only) that file will map to
the keyboard or screen. This may be useful for providing & quick check of a
short program. Screen output will pause when a key is pressed.

The compiler will now proceed to process the source program. As each
function header is encountered, the first six characters of the function name are
displayed on the screen. If it is desired to abort execution at any time, press

FCTN-4 (CLEAR). This will terminate the compiler and close all files.

If the compiler encounters an error in your program, it will display an error
message on the screen and pause. After noting the error, press enter to resume
compilation.

When the compiler has finished, it will display the number of source lines
processed, symbol table usage, and the number of errors encountered. It will
then ask if more compilations are to be done. A response of y or Y will restart
the compiler, a response of n or N will exit. If the Editor/ Assembler cartridge

1s being used, exit will be to the Ed/Asm screen. Otherwise, exit is to the
poOwWeI-up screen.

2.3 Assembling the compiler output

The output file should be assembled using the TI Assembler (option 2 from the
Ed/Asm menu). The R option is not required since C’99 generates numeric
register references. This reduces the size of the output file and speeds the
assembly slightly.

2.4 Loading the program and libraries

The object file from the assembly may be loaded using the Load and Run option
from the Ed/Asm menu. After loading the object file the CSUP lLibrary must
always be loaded. If the program uses file I/O and contains the statement:

#include dsk]l.stdio
then the CFIO library must also be loaded.

If other external functions or libraries have been referenced by your program

they must also be loaded at this time.

2.5 Running the loaded program

When the last file has been loaded, press enter to display the program name
prompt. All C'99 programs begin execution at the entry point START. When
this has been entered, your program will (hopefully) execute correctly. At pro-
gram exit the message "C99 Exit/Rerun? (N/Y)" may be displayed. This en-
sures that the screen will not be cleared at the instant. The program stops and
provides the option to rerun the program. Press y or Y to rerun the program,
n or N to exit to Ed/Asm.

Chapter 3

ERROR MESSAGES

When C’99 detects an error in the source program it displays the error on screen
and pauses. The error display is of the form:

ERROR : descripiion
displayed line of source code
with ~_ (poinier o approzimate location of error)

In most cases the description, although brief, is self-explanatory. Among the
more cryptic are:

e NOT AN LVAL : In C jargon, an lvalue is an expression which may be as-
signed a value. If a and b are variables, a is an Ivalue, a-+b is not.

e TABLE OVERFLOW : The C’99 compiler ﬁnnta.ins a number of tables. The
capacity of these tables is specified in the C99SPECS file.

¢ OUT OF CONTEXT : Some keywords such as break and case can only be used
within loops or switches.

¢ LINE TOO LONG : Every line in your program may not exceed 80 characters,

even after macro substitution.

After noting the error, press enter to resume compilation.

If 40 errors are encountered, compilation is terminated.

Notes:

The source line displayed has been pre-processed, so all multiple spaces have
been removed, all names have been truncated to six characters, and all macro
substitutions have been performed.

The error handling in C’99 has been designed to minimize the number of
spurious error messages generated. This has resulted in one shortcoming - if a
statement contains more than one real error, only the first is reported.

10

Chapter 4

LIBRARIES AND
INCLUDE FILES

The object libraries provided with this release are:

CSUP - The compiler support library. It contains the initialization, exit, and
direct support (C$) functions required by all C’99 programs as well as
console I/O functions.

CF10O - The file input/output library. It contains the file tables and all file I/0

functions.
The 1nclude files provided with this release are:

CONIO - 1I/0O definitions for console functions only.

STDIO - I/O definitions for console and file functions as well as extern speci-
fiers for all functions in CFIO. If STDIO is included in a program, CONIO
must not be included or duplicate definitions will result.

11

Chapter 5

LIBRARY FUNCTIONS

Each function is introduced by a sample call. If a function returns a value, an
assignment is shown. You may, of course, discard the function result. Arguments
must be of the same type as the sample.

The following declarations specify the type of all variables and arguments
used in the sample calls.

int b, ¢, £, row, col, key, unit, len, recno:
char buff[81];

char *filename, *mode, *name, *string;

5.1 Functions in CSUP

3.1.1 Read one character from the keyboard.

c=getchar();

Waits for a key to be pressed and returns the character value. The character
is echoed to the screen. If the character is "CR” (Enter), the screen spaces to
the start of a new line and a value of "EOL”= 10 is returned. If the character
is CTRL-Z, "EOF”= -1 is returned.

12

5.1.2 Write one character to the screen.

c=putchar(c);

Writes the character whose ascii value is ¢ to the screen. If c==10 (EOL), the
screen spaces to the start of a new line. If c==8 (BS), the cursor is backspaced.

If c==12 (FF), the screen is cleared and the cursor is homed.

If c represents a non-printable character, a ”\” is echoed. The value of ¢ is
returned.

5.1.3 Read a line from the keyboard.

c=gets (buff);

Reads one line from the keyboard into a character array. The line is termi-
nated with ENTER, CTRL-Z or the 80th character. The array is assumed to
be 81 characters characters long and a NULL-byte (0) is appended to the end of
the string. A value of buff is returned unless CTRL-Z is pressed. In that case,
0 (NULL) is returned. Use of the backspace key (FCTN-S) for inline editing is
supported.

5.1.4 Write a string to the screen.

puts(string);

Writes a siring to the screen, stopping when it finds a NULL-byte. The

NULL-character is not written. The cursor is not spaced to the start of a new
line unless newline (\n) is encountered.

5.1.5 Locate the cursor on the screen.

locate(row,col):

Places the cursor at the screen location specified by row and column. Sub-
sequent console I/O will start at the new cursor location. Row and column
numbering start at 1 as in T Basic. The validity of row and col is not checked.

5.1.6 Exit the program.

exit(c); or abort(c);

13

Branches to the C’99 exit function which closes any open files. The value of ¢
may be between 0 and 7. If c==0, the normal exit message is displayed. If c==T7,
the program terminates immediately. Otherwise the value of c is displayed in

an error message. The exit(0) function is also executed when function main
terminates.

5.1.7 Check keyboard status.

key=poll(c);

Scans the keyboard and returns the key value (if one is pressed) or 0. If ¢!=0,
the program will pause while a key is down. If FCTN-4 (CLEAR) is pressed,

the program will branch to the C'99 exit function.

5.1.8 Change screen color.

tscrn(f,b);

Changes the text mode screen colors to f (foreground) and b (background).
The Basic color number convention is used.

5.2 Functions in CFIO:

Note: In most of the file I/O functions which reference the argument ”unit”,

the operation will default to the corresponding console I/O function if the value
of unit is <= 0. For this reason, the values for stdin, stdout, and stderr as
defined in STDIO are -1, -2 and -3.

5.2.1 Open a file.

unit=fopen(name,mode) ;

Opens the named file in the specified mode. Both name and mode must be
strings or pointers to strings. Currently supported modes are:

display/variable | display/fixed | display/relative
"r” . read "R” - read "I” - read

"w” - write "W?” - write | "0O” - read/write
"u” - update "U” - update

"a” - append

14

In the mode parameter string, the mode character may be followed by a 1-3
digit record length. If this is omitted, a default length of 80 is assigned. If the
file is opened for input and a record length of sero is specified, the actual record
length of the existing file is utilized. The function ferrc(unit) can be used to
obtain the record length.

A unit number is returned for use with the file I/O functions. This unit
number must not be altered. If the open fails, NULL (0) is returned. No more
than four files may be open simultaneously and no more than three may be disk
files. Filenames may be upper or lower case and must not exceed 26 characters
in length.

5.2.2 Close a file.

¢=fclose(unit);

Performs the appropriate file closing action and makes the unit available for
another file. In the case of output files being written with putc, an incomplete

line is lost! This function returns NULL if the close fails and non-null if it

succeeds.

All open files are closed automatically if a program terminates normally.

5.2.3 Delete a file.

fdelete(filename):

Deletes the file specified by filename, which must be a string or pointer. No
error conditions are returned.

5.2.4 Read one character from a file.

c=getc(unit);
Reads and returns the next character from the file corresponding to unit.
If the end-of-line is reached a value of 10 (EOL) is returned.

If the end-of-file is reached, a value of -1 (EOF) is returned. If an error
occurs, -2 (ERR) is returned.

15

52.5 Write one character to a file.

c=putc(c,unit);
Writes the character whose ascii value is ¢ to the file.

If c==10 (EOL), the actual write operation occurs. The value of ¢ is re-
turned. If an error occurs, -2 (ERR) is returned.

9.2.6 Read a string from a file.

c=fgets{(buff,col,unit);

Reads one line from the file into a character array. At most, col-1 characters
will be transferred. A NULL byte is appended to the end of the line. If a partial
hine 1s transferred, the remainder of the line is discarded. If unit<= 0, gets is
called and the value of col is ignored. This could result in buffer overflow. A
value of buff is returned. If an end-of-file or error condition occurs, NULL is
returned.

5.2.7 Write a string to a file.

c=fputs(string,unit);

Writes a string to a file, stopping when it finds a NULL byte character.
Imbedded EOL characters act as record terminators, so multiple records can be
generated by a single call to fputs. A value of buff is returned. On end-of-file
or error, NULL is returned.

5.2.8 Test for end-of file.

c=feof(unit);

Returns a TRUE value if the next read from unit would return an end-of-file
error condition. Returns FALSE otherwise.

5.2.9 Read a record from a file.

c=fread(buff,len,unit);

Reads the next record from the file into the buffer area starting at buff. At
most, len bytes will be transferred. A NULL byte is NOT appended. If a partial

16

record is transferred, the remainder is discarded. The actual number of bytes

transferred is returned. If an end-of-file or error condition occurs, -2 (ERR) is
returned.

5.2.10 Write a record to a file.

c=fwrite(buff,len,unit);

Writes a record of len bytes from the buffer area starting at buff. If len is
greaier than the maximum record length for the file the record is truncated.
No special action occurs for NULL or EOL bytes. The actual number of bytes
iransferred is returned. If an error condition occurs, -2 (ERR) is returned.

Note: fread /fwrite does NOT default to the console !

fread /fwrite provide a binary I/O capability for applications such as printer
dot-graphics since all bytes are transferred regardless of value. If the buffer
area is comprised of some consecutive global variables and arrays then transfers
can be made directly from/to the variables and arrays. If the first element of
the buffer area is a scalar variable then its address (&var) must be used in the
function call.

5.2.11 Set record number.

fseek(unit,recno);

Sets the record number for the next I/O operation (fread or fwrite) on unit.
This function provides a random access capability for files opened as relative. If
a single fseek is followed by multiple fread or fwrite operations access becomes
sequential starting with recno. - /

5.2.12 Get error code.

c=ferrc(unit);

If the previons I/O operation resulted in an error, returns the error code.
This function should be used only when an error has occurred. The returned
value is meaningless otherwise. Error codes are listed in the TI-99/4A reference
manual. This function cannot be used after fopen errors since unit is not valid
at that time. If used immediately after a successful fopen, ferrc returns the
actual record length of the file.

17

5.2.13 Rewind a file.

rewind(unit);

If a disk file is open for read or append it is rewound. All other cases are
ignored.

18

Chapter 6

ASSEMBLY LANGUAGE
INTERFACE

Interfacing to assembly language is relatively straightforward. The "#asm ...
#endasm” form allows the placing of assembly source code directly into the
program. Since the compiler considers it to be a single statement, it may be
used as:

while(1) #asm ... #endasm
or
if (expression) #asm ... #endasm else ...

In actual program coding, the #asm directive must be the last item on a line
and the #endasm directive must appear on a line by itself. Since the compiler

18 free-format otherwise, the expected format is:

if (expression)
#asm

& ¥ 4+ ¥

#endasn
else statement;

A semicolon is not required after #endasm.

Assembly code within the "#asm ... #endasm" form has access to all
global symbols and functions by name. It is the programmer’s responsibility

19

to know the data type of the symbol (whether "int” or "char” implies word or
byte access). Stack locals and arguments may be retrieved by offset.

The push-down stack used by C'99 is located in the upper part of the low
(8K) bank of the TI-99/4A memory expansion. Register R14 in the C’99
workspace i8 reserved as the stack pointer. The stack begins at >3FFE and
grows towards >2678. External assembly language routines accessed by func-
tion calls from C code may use registers R0 thru R7. They may push items
on the stack, but must pop them off before exit. It is the responsibility of the
calling program to remove arguments from the stack after a function call. Since

arguments are passed by value, the arguments on the stack may be modified by
the called program.

20

Chapter 7

MEMORY UTILIZATION

7.1 PAD Usage.

C’989 reserves PAD locations >8300 - >832F for 1ts workspace and support code.
Other PAD locations not used by console routines are available to the program-

mer. In particular, locations >8330 - >8348 can be used to store frequently
accessed global variables by use of AORG or DORG directives.

The C’99 workspace is at >8300. Register utilization is:

RO-R7 temporary storage

R8 primary computation register

R9 local address register

R10 address of the least-significant byte of R8
R11 return address for BL instruction =~

R12 address of recursive subroutine call routine
R13 address of recursive subroutine return routine

R14 the stack pointer
R15 first word of the PUSH routine (hence BL 15)

7.2 Memory Expansion Usage.

The entire 24K bank of memory is available for program usage. The 8K bank
contains the standard Editor/Assembler utilities (>>2000 - >2676). As previ-
ously mentioned, the C'99 stack grows down from >3FFE. Since typical stack
usage 1s a few hundred bytes, the intervening space 1s available.

21

Since no indication of stack/program overlap is provided in this version of
C'99, very large programs could crash. However, the C'99 compiler which uses
all of the 24K bank and much of the 8K bank is able to compile itself successfully,

so this problem may never arise for most users.

7.3 VDP Ram Usage.

Aside from the areas normally used in the Ed/Asm environment, C’99 reserves
VDP memory locations >1B70 (>1B5D for the delete function) thru >1FFF
for file I/O requirements. This area was chosen to permit implementation of

bit-map graphics.

22

Chapter 8

STACK USAGE

C’99 makes extensive use of the previously-mentioned push-down stack for tem-
porary storage. Function arguments are pushed onto the stack as they are
encountered between parentheses, so the last argument is at the "top” of the
stack. This inverse order is somewhat unconventional. After all arguments have
been pushed on the stack, the return address is pushed on by the recursive call
code accessed via R12. Since the stack grows downwards in memory, the last
argument value is located two bytes above the stack pointer’s current contents
at function entry.

As specified In the C language definition, parameter passing is "call by
value”. If X and Y are global variables, the compiler generates the following
code for this C statement:

X=functioni(X,Y,z£());

MOV ¢X,8 value of X to primary register
BL 15 push onto stack

MOV @Y,8 ditto for Y

BL 15

BL *12 recursive call zf (subroutine)
DATA ZF every function value is returned in RS8
BL 15 push value onto stack

BL *12 call functionl

DATA FUNCTI note 6 characters used

Al 14,6 restore stack pointer

MOV 8,0X primary reg to X

23

As functionl is entered, the stack contents are:

return addr <=== gtack pointer (R14)

In this case, the value of Y could be accessed by "MOV @4(14),8".

Local vanables allocate as much stack space as needed and are assigned
the current value of the stack pointer (after allocation) as their address. The
compiler ensures that each variable is located on a word boundary.

The declarations:

int z;
char array[5];

generate:
AI 14,-8

which allocates space on the stack for 8 bytes (not initialized). References
to s will be made to stack pointer+6. Note that the stack pointer changes by 8
(not 7) bytes, ensuring that the following instruction falls on a word boundary.

Until the stack pointer is altered again, , array[0] is at *14, array[1} is at
@1(14), array[2] is at @2(14), etc. For this reason, imbedded assembly language
code using "#asm ... #endasm" cannot access local variables by name, but
must know their location relative to the siack pointer’s current contents.

24

[

Chapter 9

PROGRAMMING
INFORMATION.

e When a C’99 program begins execution, the screen is in text mode (40
characters/line) displaying white characters on a dark blue background.
The function tscrn provides a means of changing the default color. It

i8 possible to access VDP registers and memory from C’99 by using the
appropriate values with pointers.

¢ The logical operators "&&” and ”||” (with left-to-right evaluation and
early dropout) are available in C’99.

The bitwise operators *&” and " |” will usually yield the correct results
in logical expressions, but forms such as "if(i&j)” should be avoided as

erroneous resulis may be produced!! (eg. if i=1, j=2 then i&j=0).

C’99 follows the usual convention in using a non-zero value to represent a
true condition and a gero value to represent a false condition.

¢ Global variables result in more efficient code than local variables but they
cannot be used 1n recursive situations.

In addition, global variables (especially arrays) increase the size of a pro-
gram module.

¢ Functions may be passed the names of other functions as arguments for
indirect calling.

The dummy argument for a function name must appear in the argument

list as a simple name and must be declared as an integer pointer. Calls
should be coded as "fcn()” and not as ” (xfen) (7.

25

Since C’99 programs are self-contained, they may be saved as program
files. Two object files, CO99PFI and C99PFF, have been placed on the re-
lease diskette to facilitate program file creation. C99PFI must be loaded
before user programs and libraries since it defines the entry points SFIRST
and SLOAD and contains code to check for the presence of the Edi-
tor/Assembler cartridge and load the standard utilities from the Ed/Asm
GROM. C99PFF must be loaded after all programs and libraries as it
defines the entry point SLAST.

If program files are run using an Editor/Assembler simulator, they will
only run if the standard utilities are available. The two simulators tested
both satisfied this requirement. Since the possibility of over-writing the
simulator code exists, exit is to the power-up title screen.

If the rerun option is chosen at program termination, global variables are
NOT reset to their initial values. Since this may cause undesirable results

in some programs, the ability to bypass the rerun option is provided by
exit(7).

C’09 has consistent handling of GROM addresses and GPL subprogram
linkage. The GROM address is saved at program start and restored at
program exit. C8GPLL, a special GPLLNK function which will function

in any run mode, is included in CSUP. This function is used as follows:

extern C$GPLL()

#asm

BL @C$GPLL

DATA xxx <~ the address of the required routine, as
#endasm specified for GPLLNK in the Ed/Asm manual.

A modest degree of incompatibilty exists between this version of C’99 and
the versions #2.0/2.1. :

Indirect function calls are handled differently, so any library functions us-
ing this feature must be recompiled. The new CSUP library must be used
with all programs compiled by C’99 #4.0, but this library is compati-
ble with functions compiled by earlier versions #2.0/2.1. Since the object
code produced by #4.0is more efficient and compact, consideration should
be given to recompiling all frequently used programs and functions.

26

Chapter 10

C99 V4.0 COMPILER
SPECIFICATIONS

10.1 Features of C’99 (Revised 88/01/01)

C’89 currently supports:

1. Data type declarations of:
"char” (8 bits)
"int” (16 bits)

pointers to either of the above by using an ”*” before the variable name.

arrays of pointers to either of the above by using an ”*” before the AITAY
name. -

initializers on declarations for global variables.

The storage class of a declaration is implicitly determined by its position.
Declarations occurring outside of any function are global (static) while
declarations occurring inside a function definition are local (auto).

2. Storage class specifier of:

"extern” (provides linkage to functions and global variables defined in
other object modules by generating REF assembler directives.)

3. Arrays:

One- or two- dimensional arrays may be of type char or int.

27

4. Pointers:

Local and static pointers can contain the address of char or int data ele-
ments.

b. PIOEIEII‘I. control:

if(expression) statement;

if(expression) statement; else statement;
while(expression) statement;

do statement while(expression);
for(expressionl;expression2;expression3)statement;
switch(expression) statement;

goto label;

case constant :

default :

break;

continue;

label :

return;

return expression;

; (null statement)

{ statement; statement; ... } (compound statement)

6. Expressions:

unary operators:

"-? (minus)

"*? (indirection)

"&" (address of)

»*? (ones complement)

”1” (logical negation)

"++” (increment, either prefix or postfix)
»— " (decrement, either prefix or postfix)
binary operators:

”4+” (addition)

" (subtraction)

?*? (multiplication)

28

”/? (division)

"%” (modulo, ie. remainder from division)
”{” (bitwise inclusive or)

7~ 7 (bitwise exclusive or)

n&" (bitwise and)

P==" (test if equal) ”!=" (test if not equal)
?<” (test if less than)

?<=" (test if less or equal)

»>* (test if greater than)

">=" (test if greater or equal)

"< <” (arithmetic left shift)

?>>" (arithmetic right shift)

?=" (assignment)

expression , expression

logical operators:

"&&” (logical and with left-to-right evaluation and early dropout)
"1 1" (logical or with left-to-right evaluation and early dropout)

conditional expression:

expression 7 expression : expression ;

(the second expression is evaluated only if the first is true, the third is
evaluated only if the first is false)

primaries:

array|[expression]
function(argl,arg?,...,azgn)

local variable or pointer

global (static) variable or pointer

constants:

decimal number

hexadecimal number

quoted string (”sample string”)
primed string (*a’ or ’ab’)

(the \ character constant is supported)

29

7. Compiler commands:

F#define name string
(pre-processor will replace name with string)
#include "filename”

(take input from filename until end-of-file. cannot be nested.)
F#ifdef name

(compiles following lines if name is defined by #define)
#ifndef name

(compiles following lines if name is undefined)

F#else

{(compiles following lines if previous #if... was false)
Fendif

(ends conditional compilation block)

Fasm ... #endasm

(allows all code between ”#asm” and " #endasm” to be passed unchanged
to the assembler.

this command is actually a statement and may be used as: "if (expression)
#asm ... #endasm else ...")

8. Miscellaneous:

Expression evaluation maintains the same heirarchy as in standard C.

Pointer arithmetic recognizes the data type of the destination. ptr++ will
increment by two if ptr was declared as ”int *ptr”.

Pointer compares are unsigned since addresses are not signed numbers.

Operations which require more than two words of instructions generate
calls to routines in the CSUP library to minimige the size of the program.
All such support routines have names beginning with C$.

The underscore character _” is translated to " #” so that generated labels
will be recognized by the assembler.

Conditional compilation directives (#if...) may be nested to any level.
The generated code is re-entrant as required by C.

Each time a function is referenced, the local vanables refer to a fresh area
of the stack.

The entry statement (not in standard C) makes a function or global vari-
able name available to other modules by generating DEF assembler direc-
tives. Usage is:

30

eniry namel,name2,...;

Note that parentheses and brackets are not necessary in entry statements.

10.2 Limitations of C’99

C’909 does not support:

n

w 0 =3

10.
11.

. Structures, unions and arrays of more than two dimensions.
. Nested initializers for two-dimensional arrays.

. Constant expressions in initializers, case and as array bounds (constants

must be used).

. Data types other than "char” and "int”.

. Function calls returning other than "int” values (returned pointers are

valid since they are the same size!)

. The unary ”sizeof” and casts.
. The assignment operators += ~= #= /= Y= >>= <<= &= "= |=
. Storage class specifiers: auto, static, register, typedef.

. The use of arguments within a "#define” command.

Pointers to anything but char or int.

\ followed by ’in a primed string or ” in a quoted string.

C?’98 programs may have a maximum of;

h Ot o W

. 1000 characters of macro (#define) definitions.

. 258 global symbols (variable and function names, including functions ex-

ternal to the program).

. 40 local symbols within a single function definition.
. 20 simultaneously active loops (while, for, do).
. 60 cases within any one switch.

. 4096 characters of literal strings (”string”) within a single function defi-

nition or initialiger.

31

Other limitations of C'99:

The implementation of indirect function calls is non-standard !! Such calls
may not be nested (ie. an indirect call must not have another indirect function
evaluation as a parameter) and usage is not as in standard C.

Function names passed as parameters should be declared as integer point-
ers and calls to such functions should be coded as normal calls: *fen()”, not
”(*fen)()” .

Since C’99 is a single-pass compiler, undefined names are not detected and
are assumed to be function names not yet defined. If this assumption is incor-

rect, an undefined REFerence error will occur when the compiled program is
assembled.

Because a single-pass compiler scans the source code only once, very little
object code optimization is possible. For example, the statement x=1+2; results
in code to add 1 and 2 at runtime.

Names may be of any length but the compiler only recognizes the first six
characters. Names used with #ifdef and #ifndef must not exceed six characters.

REF (external reference) directives are generated for functions in the CSUP
hibrary only. REFs to functions in other libraries must be provided explicitly
using extern.

The include file STDIO provides extern specifiers for all functions in the
CFIO library.

A DEF (external definition) directive is automatically generated only for
function main. The entry statement will generate DEFs for function and global
vaniable names, making them available to other object modules.

The file I/O library (CFIO) is limited to processing Display type files. Tom
Bentley of Otiawa, Ontario has writien an excellent I/O function library which
supports Internal files.

Global variables which are not specifically initalized have an indeterminate
value at program start,

Initializers for two-dimensional arrays may not contain nested row initial-
izers. Values in the initialization vector will be stored row-wise, starting from
the first element of the array. Two dimensional character arrays may be initial-

ized with a sequence of strings, each with length of row size-1 to allow for the
NULL-byte terminator.

32

Chapter 11

REFERENCES.

¢ The C Programming [.anguage by Brian Kernighan and Dennis Ritchie
Prentice-Hall 1978

e The C Primer by Les Hancock and Morris Kreiger
McGraw-Hill 1982 (also C Primer Plus ...)

¢ Learning to program in C by Thomas Plum
Plum Hall Inc. 1983

e A number of German C’99 users have found quite useful:
"Das C-Anwender Handbuch”, R.Heigenmoser, im Hofacker-Verlag.

Typeseiting in WIRX by T. Brouwer

33

