TEXAS INSTRUMENTS SOLID STATE
SOFTWARE™
CARTRIDGE

CC-40
PASCAL
USER'S GUIDE

PASCAL

Important Notice Regarding Programs and Book Materials

Texas Instruments makes no warranty, either expressed or implied,
ncluding but not limited to any implied warranties of merchantability and
fitness for a particular purpose, regarding these programs or book materials
or any programs derived therefrom and makes such materials available solely
onan ‘‘as is™ basis.

In no event shall Texas Instruments be liable to anyone for special, collateral,
incidental, or consequential damages in connection with or arising out of the
purchase or nse of these book materials or programs and the sole and
exclusive liability of Texas Instruments, regardless of the form of action,
shall not exceed the purchase price of the cartridge. Moreover, Texas
Instruments shall not be liable for any claim of any kind whatsoever against
the user of these programs or book materials by any other party.

f{aterials

wressed or implied,

3 of merchantability and
irograms or book materials
*h materials available solely

.yone for special, collateral,
mn with or arising out of the
ms and the sole and

ss of the form of action,

te. Moreover, Texas

v kind whatsoever against
1y other party.

CC-40 Pascal User’s Guide

This book was developed and written by:
Nancy Bain Barnett
With contributions by:

Glen Thornton
Scott Thomson

Bill Petersen

Gary Von Berg
Chris Alley
Rosemary DeYoung

Copyright £ 1983, Texas Instruments Incorporated All rights reserved,

ISBN 0-89512-094-1
Library of Congress Catalog Number:83-50730

ind written by:

nents [ncorporated

1ber:83-50730

Allrights reserved.

Table of Contents

Chapter 1—Pascal on the CC-40 |

Intreduction .

Using this Mar-ual R

Chapter 2—Getting Started .

lmtalhngorﬂfplaﬂnga(?armdgp
Initializing the Pascal System

TheOverlay
Leaving the Pascal System

Writing, Running, and Listing a Pascal Program

Editing Program Lines

ngramﬂmraaeandi:mutlnn.'.'.-.........,.”.:.-:..:

Saving a Program . .

Execugmgaqm"dwam

Review

Chapter E—Computer ngrammlrtg

Introduction .
Pascal l.anguagﬁ

Program Format,'ﬁﬁ.'Z.':.'f."._'.'_'.'ﬁ.'ﬁ_'ﬁﬁﬁﬁﬁ.'f

Program Heading . .

ProgramBIOCK

Pascal Syntax

:uenuﬁm

Constants . .

Reserved S}rmboks
ProgramLines.

Line Numbering

Renumbering Program Lines
Indentation

Line Length .
Pum:mat’eon

Multiple- -Biatamant um!'a
Statements on Humple Lines .

Comments . .

Interpretertiptwns Pl

Cutput Statements

The WRITELN Statement .
The WRITE Statement
Terminating Program Execution

The Reserved Word END

The HALT Statement
The EXIT Statement

Using Statements without Line Numbers

Error Handling .

Debugging a Progmm

Review

Table of Contents

Chapterd—Expressions.coiiinnnon.
Introduction 36

Constant Declarations 36
VariableDeclarations. 37
INTEGERTYDPE ... ov it ae e eieeieaens 38
REALType et 39
CHARTYDE i i 40
STRINGTYpEt e e i ns 40
BOOLEANTYpPe. i i n 42
Setting the Values of Variables T R i it 2
Assignment Statements 42
InputStatements. il 44
The READLN Statement 47
The READStatement. 47

Using Prompts forInput. R T e
Operators e e 50
INTEGERDataOperators .. _.................... 50

ArithmeticOperators........................ B0
Relational Operators b2

LogicalOperators 53
REALDataOperatorscoouvinnn. 53 |
ArithmeticOperators. 53 |

RelationalOperators b4
LogicalOperators Bbb _
CharacterDataOperators bb |
Relational Operators bb
LogicalOperators bb
STRING DataOperators 56
RelationalOperators 56
LogicalOperators ovivninnn 57 i
BOOLEANDataOperators BT £
RelationalOperators 87 I
LogicalOperators B8

OperatorPrecedence- 60
Forming Expressions 62
Functions%. 500 5. 5. -5, R0 20E 63

Integer Functions 64 =
NUMEHC ... ;

Real Functions:, =55 . . iisteli Ve sehnisiis e |
CharacterFunction Tl
StringFunctions 72
BooleanFunctions 73
Multi-TypeFunctions 78

TYPEDeclarationsunviiiuiannin.

Table of Contents

36 DataTypeFormats 74

......................... 36 UnformattedData............................. T4
36 FormattedDatac........ 76

a7 PositioningtheCursor 78

38 Review e R S - 79

39

40 Chapter5—FlowofControl 82

......................... 40 Introduction 82
OO - o e - RepetitionStatements 82
Mles’c o iendindoinanis 42 TheFORStatement, .. 83
P B T e A E ey R The REPEAT Statement N A 86
o el R e e The WHILE Statement 87
WBNIE o, s s el AT NestedLoops, 89
e A T Conditional Branch Statements. 91
pukizi R AR 48 ThelFStatement 91
e R T T e e O NestedIFStatements 93
- P = 1 The CASEStatement.c...o..... 97
gl ST R AR Sl A Unconditional Branch Statements 100
i m S T DR The GOTOStatement 100
.......... TS . - | LABELDeclarations 100
........................ 53 Reviewcciiiiii.... 10
; 54 Chapter 6—Arraysouiiirnnunnnn... 103
S 55 Introduction, 103
rs.. 55 Declaringan ArrayType 107
i 55 Random Access to a One-Dimensional Array 108
56 Two-Dimensional Arrays, 109

56 Accessing the Elementsin a Two-Dimensional Array ... 110

56 Three-Dimensional Arrays. 112

- |/ Arraysof Characters 113
ME e BT Packed AITAYS, 115
a7 Review 120

it

60 Chapter 7—Proceduresand Functions 121

62 Introductionoiii 121

...................... 63 Procedure Declarations 122

64 FunctionDeclarations. 125

64 Endinga ProcedureorFunction 126

65 Parameters_ 129

68 Global and Local ldentifiers., 131
......................... 69 | PassingInformation 132-
6% | One-WayTransferoo.... 133

T Two-WayTransfer 133

72 | User-Defined Functions 133

....... 73 User-Defined Procedures. 135
(I ArrayParameters.uu.. 138

(I The FORWARD Declaration. 143

Table of Contents

Intrinsic Procedures i Introdusth
StringProceduresoiiiiaiiiaaen g =i iae
Array Procedures

Recursion

Review

ChapterS—FlleHandlmg
Introduction . o e -ty
Data Format
Data Records
File Organization
Initializing a Mass-Storage Medium
Deleting a File
File-Processing Keywords
File Declaration
Openingand ClosingaFile . _....................
The RESET Procedureccoiunnena-
The REWRITE Procedurec00000-
The CLOSEProcedurecccvovinrnnnn
File Input and Output
The EOLN and EQOF Functions
File Input withREAD and READLN
The PAGE Procedure
IVOStatuscocvcevneinn
Review

Unlig (i

o Wm-_-_.w_hqu-f-m T ar

.. 144
. 144

. 146

L. 147

150

. 162

Inctions ., v i i

Chapter 1—Pascal on the CC-40

Introduction

Using this Manual

The CC-40 Pascal User’s Guide was written to help you learn
to write Pascal programs on the Compact Computer 40. The
CC-40 Pascal Reference Guide contains the features of CC-40
Pascal in alphabetical order followed by appendices that
contain reserved words, error messages, and other reference
material for use once you are familiar with Pascal.

Pascal is a programming language that was defined by Niklaus
Wirth in the late sixties. In comparison to other programming
languages such as BASIC, FORTRAN, or COBOL, Pascal is
characterized by a highly disciplined, relatively formal
syntax and structure. Thus, Pascal offers many advantages
over other less-structured programming languages, such as

an easily understood syntax, implicit error-checking, and
program rodularity. Asarule, programs written in Pascal
can be easily moved from one computer to another.

The original definition of Pascal by Nicklaus Wirth is now
known as standard Pascal. Newer versions of Pascal have
been released that contain additions to the original
definition, These versions often incorporate advanced
features into standard Pascal. One of the most widely-used
versions, UCSD Pascal, was developed for use on time-
sharing systems and small computers. UCSD Pascalisa
trademark of the Board of Regents of the University of
California at San Diego. The version of Pascal implemented
for the CC-40 is a subset of UCSD Pascal.

The Pascal Solid State Software™ cartridge is a learning aid
that was designed to help you learn the Pascal programming
language and to write Pascal programs in a very short time.
This learning aid provides a fast, easy, and economical
method of learning Pascal.

This chapter is an introduction to the Pascal programming
language for use with the Texas Instruments Compact
Computer 40.

The lexical standards and syntactic conventions of the
version of Pascal used with the CC-40 are discussed in the
remaining chapters. At the end of each chapter are review
questions. You can check your answers in the Answer Key,
located after chapter 8.

Chapter 2 provides information on installing the Solid State

Software™ cartridge, using the Pascal overlay provided with
the cartridge, writing and executing a program, editing lines,
and saving programs.

Chapter 1—Pascal on the CC-40

Chapter 3 provides an overview of a Pascal program and the
rules for writing program lines.

Chapter 4 provides information on constructing expressions
for use as program statements.

Chapter 5 is a discussion of statements that control the flow
of a program.

Chapter 6 contains information on arrays.
Chapter 7 describes procedures and functions.
Chapter 8 describes the process of using files,

This manual was designed to enable you to begin writing
Pascal programsimmediately, evenif you have never
programmed or used Pascal before. You should, however, be
familiar with the CC-40 User’s Guide.

The most effective way to learn a programming language is to
use it. You can learn Pascal on the CC-40 more guickly if you
try the examples in this manual, complete the review
questions at the ends of chapters 2 through 8, and then
experiment with any programs you write. You cannot
damage your computer by entering instructions. Any
operation can be cancelled by pressing the BREAK and CLR
keysor the reset key.

Chaptor §

Inatalling
Roplaaiug |
Cortriie |

!
|

iew of a Pascal program and the
28.

ton on constructing expressions
s.

atementsthat control the flow

ononarrays.
‘es and functions.
155 of using files.

enable you to begin writing
,even if you have never

efore. You should, however, be
's Guide.

rnaprogramming language is to

1the CC-40 more quickly if you
al, complete the review

ers 2 through 8, and then

1S you write. You cannot

‘ering instructions. Any
pressing the BREAK and CLR

Chapter 2—Getting Started

Installing or
Replacing a
Cartridge

When you turn on your CC-40, the computer is in BASIC

cornmand level and is ready to per

program in Pascal, you must instal
Software™ cartridge.

Use the following procedure when
State Software™ cartridge.

1. Turn the computer off,

2. Blide the cartridge port cover back and remove it from the

computer as shown in the diagra

===l

form calculations, accept
commands, and support programming in BASIC. To writea

I the Pascal Solid State

installing the Pascal Solid

m below.

—l—i—i—

3. If a cartridge is already installed, remove it by pushing the

cartridge away from the keyboard until it is released. Lift
the cartridge from the cartridge port.

- Lay the Pascal Solid State Software™ cartridge in the

cartridge port with the cartridge name facing up and

toward the keyboard.

. Press firmly on the back of the cartridge and slide it toward
the keyboard until the tabs on the ¢

provided and the cartridge locks
cartridge port cover and verify th

slots. TABS MUST FIT
INTO SLOTS

nto place. Replace the
at its tabs also fit into the

=l ——l—r

artridge enter the slots

Chapter 2—Getting Started

Initializing the
Pascal System

The Overlay

Leaving the
Pascal System

After the Pascal cartridge is installed, turn the console on by
pressing the ON key. If a message is displayed, press the CLR
or ENTER key to clear the display. When the flashing cursor
appears, type run ‘*pascal’ and press the ENTER key.

The compuier then determines if a non-Pascal programisin
memory. If there is such a program, the message Erase
program (y/n)?isdisplayed. If you press n, the computer
leaves the program in memory and returns to the BASIC
command level. If you press ¥, the program in memory is
erased and the message Pascal System Initializedis
then displayed, informing you that the Pascal system isin
command. Press the CLR or ENTER key to clear the message
from the display and the cursor appears in column 1.

If no program isin memory or if a Pascal program is there, the ||
message Pascal System Initializedisdisplayed after ;
run ‘*pascal” is entered.

The overlay provided with your Pascal cartridge fits over the
typewriter-like keyboard to show the Pascal keywords that
can be entered into the display with the FN key. The
keywords that can be accessed from the numeric keypad are
the same as those listed for BASIC in the CC-40 User’s Guide
except that the / key accesses the keyword DIV instead of
the'keyword VERIFY.

Toaccess a keyword, press the FN key and then the key
under the keyword. Uzing the FN key can save you many
keystrokes.

Note that some symbolsin Pascalsuchas {, }, [, and) are
printed above the top row of keys on the keyboard. Any of
these characters can be entered in the display if you first
press the CTL key and then the key under the symbol,

You can leave the Pascal system and return to the BASIC
command level by entering the reserved word BYE. The
BASIC command level is then automatically initialized and
you can begin entering instructions in BASIC. Any Pascal
program is erased from memory.

Note also that when the computer is reset or turned off by
either the OFF key or the Automatic Power Down™ feature,
the Pascal system is exited. When the computeris turned
back on, the BASIC system is in command. You must enter
run “*pascal’’ to return to the Pascal system. Any Pascal

is installed, turn the console on by
essage isdisplayed, press the CLR
display. When the flashing cursor
' and press the ENTER key.

inesif a non-Pascal program isin
rogram, the message Erase

yed. If you press n, the computer
ory and returns to the BASIC

sy, the program in memory is
scal System Initializedis
you that the Pascal systemisin

t ENTER key to clear the message
rsor appearsincotumn 1.

orif a Pascal program is there, the
Initializedisdisplayed after

your Pascal cartridge fits over the
o show the Pascal keywords that
Jlay with the FN key. The

ised from the numeric keypad are
BASIC inthe CC-40 User’s Guide
sses the keyword DIV instead of

the FN key and then the key
:he FN key can save you many

Yascalsuchas {, }, [, and] are |
f keys onthe keyboard. Any of

ered in the display if you first

the key under the symbol.

stem and return to the BASIC |
the reserved word BYE. The |

en automatically initialized and | |
ructionsin BASIC. Any Pascal

nory. |

nputer isreset or turned off by i
utomatic Power Doun™ feature, i
When the computer is turned

isin command. You must enter
1e Pascal system. Any Pascal

Chapter 2—Getting Started

Writing, Running,
and Listing
a Pascal Program

program lines that were stored in memory remain there
unless you have erased the computer memory with a NEW or
NEW ALL command. Thus, after you have cleared the
message Pascal System Initialized by pressing either
the CLR or ENTER key, you can use the Pascal program in
memory.

To enter a new program, you must first erase the memory by
entering either NEW or NEW ALL.

If the Pascal system was running before the computer was
turned off and you turn the computer on to program in
BASIC, you must first initialize the BASIC system by entering
the NEW ALL command.

Enter the following program in your CC-40 exactly as it
appears below. (Don't forget the period after END.}

100 PROGRAM example;

110 BEGIN

120 WRITELN{ 'writeln is an output statement ')
130 END.

To execute or run the program, press the RUN key (ortype
the word run) and then press the ENTER key. The message
writein is an output statement isdisplayed. Pressthe
CLR key to clear the display.

You can see that the program lines have been stored in
memory by typing the word LIST and pressing the ENTER
key. The single line

100 PROGRAM example;

is displayed. The number 100 is the line number of the first
line of the program. Each line of a CC-40 Pascal program
must have a line number from 1 through 32766 followed bya
space and at least one nonblank character.

Press the ENTER key to see each successive program line.
When no more lines are displayed, LIST has displayed all of
thelines in memory.

You canalso use the t and 4 keys to view the stored lines.
Pressing t displays each program line in descending order;
pressing 4 displays the lines in ascending order,

Chapter 2—Getting Started

Editing Program
Lines

Program lines are stored in numerical order, regardless of the
order in which they are entered. For example, enter the
followinglines in your CC-40.

119 WRITELN(' ' first statement displayed’);
125 WRITELN('third statement displayed’);

You can list the program (or use the f and ¢ keys) to see that
the additional program lines are stored in memory in
numerical order.

To run the program, clear the display and enter the RUN
command. The line

first statement displayed

isdisplayed. Press the ENTER key to see the nextline.
writeln is an output statement

Press the ENTER key to see the next line.

third statement displayed

After this statement is displayed, press the CLR or ENTER
key to clear the display. Press the § key untii the line

120 WRITELN{ 'writeln is an output statement’):

is displayed. Note that the characterswriteln ts an
output statement are enclosed in apostrophesand
parentheses. Characters enclosed in apostrophes are calleda
character string and are displayed exactly as they appear
between the apostrophes.

The parentheses are used to enclose all of the items that the
WRITELN is to display. For example, another character string |
can be displayed by this WRITELN by using the edit keys to
insert another character string into line 120 as described in
the next section.

After you have used the { key to display line 120, press the =
key until the cursor is positioned over the closing parenthesis.
Press the SHIFT — keys and then enter the following. (Don't
forget the comma.)

,' 2nd character string’

Chapter 2—Getting Started

i numerical order, regardless of the
tered. For example, enter the

-40.

tatement displayed’) .
tatement displayed’);

ir use the t and + keys) to see that
esare stored in memory in

the display and enter the RUN

layed

[ER key to seethe next line.

statement
e the next line.

layed

played, pressthe CLR or ENTER
ress the ¢ key until the line

is an output statement’),;

rcharacterswriteln is an
‘nclosed in apostrophes and
,nclosed in apostrophes are called a
isplayed exactly as they appear

to enclose all of the items that the
yrexample, another character string
JRITELN by using the edit keys to
string inte line 120 as described in

key to display line 120, pressthe =
itioned over the closing parenthesis.
nd then enter the following. (Don’t

ring’

B - e

= r——

When line 120 contains the following

120 WRITELN('writeln 1s an output statement’,
' 2nd character string’).

press the ENTER key to enter the line. The WRITELN in line
120 now has two character strings to display. To runthe
program, press the RUN and ENTER keys.

After the first line is displayed, press the ENTER key to view
the next line. Note that the = indicator in the display is
turned on as a signal that characters are in some columns to
the right of column 31. Press CTL —to shift the characters so
that column 25 is positioned in the first column of the display.
You can then view the second string, 2nd character

string.

Press CTL + or CTL f to shift the displayed charactersso that
the first character of the line isin column 1 of the display.
Press the ENTER key to see the last displayed line and then
CLR to clear the display.

You can also display numbers in addition to character strings.
Numbers do not have to be enclosed in apostrophes. To
display the numbers 10, 345, and 867.5308 in the program,
change the program lines by using the edit keys as shown
below.

Press the t or ¢ key until line 119 is displayed. Press - until
the cursor is over the first apostrophe. Then type 10. Press
the SHIFT + keys untit the characters through the next
apostrophe are deleted. When line 119 contains the following

119 WRITELN(10) .

press the ¢ key to enter the line and to display line 120. Press
— until the cursor is over the first apostrophe and type 345);.
Press CTL ¥ to clear all characters to the right of the cursor
and the following line is then displayed.

120 WRITELN(345);

Press 4+ to enter the line and to display the next line. Then
change line 125 to the following.

125 WRITELN(867 .5309)

Chapter 2—Getting Started

List the program (or use the t or ¢ keys)to see that your
program contains the following lines.

100 PROGRAM example:
110 BEGIN

119 WRITELN(10):

120 WRITELN(345);

125 WRITELN(B67.5309);
130 END.

After you enter the RUN command, the number 10 is
displayed. Press the ENTER key to view the next number,
345. Then press the ENTER key to view the last number,
867 .5309.

Suppose you now want to delete lines 119 and 125 from the
program. Press CLR to clear the display and type DEL (or
press FN +=}and the line numbers as shown below.

DEL 119,125

Press ENTER and then LIST the program to see that lines 119
and 125 have been deleted. Your program should now
contain the lines shown below,

100 PROGRAM example;
110 BEGIN

120 WRITELN(345);
130 END

Note that you can use the DEL command with any of the
following specifications.

Command Result

DEL 100 Deletes line 100.

DEL 100,110,130 Deleteslines 100, 110, and 130,

DEL 100 - Deletes line 100 and all following lines. |

DEL - 100

DEL 100 - 110, Deletes lines 100 through 110 and lines
120 - 130 120 through 130.

218

rthe t or { keys}to see that your
Alowing lines.

e,

9);

{command, the number 10 is
TER key to view the next number,
[ER key to view the last number,

‘0 delete lines 119 and 125 from the
lear the display and type DEL (or
numbers as shown below.

IST the program to see that lines 119
ed. Your program should now
below.

2 DEL command with any of the

sult

etesline 100.

eteslines 100, 110, and 130.

etesline 100 and all following lines.

etesline 100 and all preceding lines.

eteslines 100 through 110 and lines
through 130.

e S

B fe e

T P S T s it e i

a

i ~Chapter 2—Getting Started

rogram Storage
fand Execution

Baving a Program

Executinga
Stored Program

If you want to delete all of the lines in memory, type NEW or
NEW ALL and press ENTER. When you list the program (or
use the f or ¥ keys), no program lines are displayed.

You cansave a program that you want to keep by using the
SAVE command. To execute a program that has been stored,
use the OLD command and the RUN command.

The SAVE command is used to copy a program in memory to
an external storage device. To store a program on a new
medium, you must first format the medium. Note that if you
format a medium that has data on it, you lose the data. For
information on formatting, refer to the manual supplied with
the peripheral device you are using.

The command
SAVE '1l.myprog’

writes the program in memory to the medium on device 1.
The program is saved under the filename ‘‘myprog.”’
Warning: When you save a program on a medium that
contains other programs, be sure to give the program in
memory a name that does not already exist for a program on
the medium. Otherwise, the program on the medium is
deleted before the program in memory is written to the
medium.

You can also protect a program when you save it, by using
PROTECTED in the SAVE command. The program in memory
remains unprotected, but the saved copy cannot be listed,
edited, or stored. For example, the following SAVE command
places a protected copy of the program in memory on an
external device.

SAVE'l.myprog’ ,PROTECTED

Note: Because a protected program can never be listed,
edited, or stored, be sure to save an unprotected copy.

To execute a program stored on a peripheral device, the
program must be loaded into memory by using the OLD or the
RLUN command. The OLD command is used when you want to
load the program into memory. You can then verify that the
program was loaded correctly, edit the program, orlist the
program before you run it. The statements shown on the next
page illustrate loading a program into memory and verifying
that it was loaded correctly.

15

Chapter 2—Getting Started

OLD'1.myprog’
VERIFY 'L.myprog’

To execute the program, enter RUN,
The RUN command can be used to retrieve and execute a
prograim stored on a peripheral device. The command below
loads a program into memory from a peripheral device and
then executesit.
RUN’1l.myprog’
Review 1. Afteryou instali the Pascal cartridge, you must enter
Chapter 2 what command before You can begin to program in
Pascal?

You leave the Pascal system when the computer is turned I
off or when you enter what command?

In the program line
120 WRITELN('writeln is an output statement’):

the number 120 is called the

‘writeln is an output statement’ is knownasa_ __ _

Character strings must be enclosed in __ .
What is missing in the following program?

100 PROGRAM example:

110 BEGIN

120 WRITELN('writeln is an output statement');
130 END

To delete aline from a program, you would use the _
command.

Tosavea program, Youcanusethe_ _ _ command. A
What is wrong with the f ollowing command?
SAVE “l.myprog"

- Write the command that loads a program called
'myprog” located on the medium in device 7.

£ Introduction
i
3
1, enter RUN. .
I
be used toretrieve and executea &
‘ipheral device. The command below
‘mory from a peripheral device and

» Pascal cartridge, you must enter
ore you can begin to programin

| system when the computer is turned
er what command?

teln is an output statement'):

Uled the . I
‘statement’ isknownasa h
]

F

| Puscal Language
I

ust be enclosed in
i
1e following program? i

..
al

nple;

:eln is an output statement');

a program, you would use the |

ou can use the command. Il

‘he following command? |

that loads a program called
n the medium in device 7.

7: :]j]t_l_gter 3—Computer Programming

Programming languages such as FORTRAN, PL/1, BASIC, and
Pascal are called high-level languages. These languages must
use a compiler or interpreter to translate the language into
one the computer can use. The Pascal available with the
CC-40 uses an interpreter rather than a compiler to translate
instructions into the machine language. When you enter an
instruction, the interpreter scans it for syntax errors. If no
syntax errors are found, the instruction is translated into the
internal machine form and stored in memory. If a syntax
error is detected, a message is displayed to inform you of the
error so that you can correct the line and reenter it.

A Pascal system that uses a compiler requires that the entire
program be written before any line is translated. No errors
are detected until the entire program is entered to be
compiled. If any errors are detected by the compiler, they
must be corrected and the entire program must be compiled
again to determine if other errors are present. After the
program is compiled, it is stored to a file, The program can be
executed afterit isloaded into memory.

Because it uses an interpreter, CC-40 Pascal is easy to learn
and use. Afterall the instructions in a program are entered,
translated, and stored in memory, you can have the computer
perform or execute the stored program with a single
command,

To solve a problem effectively with a computer, you must be
able to reduce the solution of the problem to a sequence of
steps that is both definite (always produces the same results}
and finite (must end eventually). Such a sequence of stepsis
calied an algorithm. Once you have developed the algorithm
for solving a problem, you must translate the algorithmintoa
language the computer understands

Pascal facilitates the conversion of algorithms into computer
programs. First, the algorithm or sequence of steps is written
in a general outline form. Then, the outline isbroken down
into a number of simpler programming tasks that are
independent of each other. This stepwise refinement, called
top-down design, results in Pascal programs that are
organized as blocks of programming tasks. Top-down design
produces programs that are organized, or *'structured,’” inan
easily understood manner.

Chapter 3—Computer Programming

Program Format

In this manual, the elements of Pascal are grouped into five |
classes.

« Statements instructions for the computer to perform

¢« Declarations definitions of names

« Input the information the program processes

= Qutput the results

» Commands instructions to the computer that cannot be
performed in a program

A Pascal program is made up of statements and declarations. i [
A typical program processes the data (input) entered from tha d
keyboard or a storage medium. The information produced by
the program is known as output.

Every Pascal program must contatn two parts: a program
heading and a program block. The illustration below shows |
the two major parts of a Pascal program. |

program heading PROGRAM identifier;

declarations

program block BEGIN

program body

END.

Major Parts of a Pascal Program

Program Heading]
The first line in a program must be a program heading. In the E
example,

100 PROGRAM exampie;

110 BEGIN

120 WRITELN('writeln is an output statement'};
130 END.

line 100 contains the program heading, PROGRAM example; 'f:
A program heading assigns a program name to all the lines
that follow it.

H
i

| Chapter 3—Computer Programming

gi

ments of Pascal are grouped into five

e el

tions for the computer to perform
ions of names

ormation the program processes

ults

‘tions to the computer that cannot be
mned in a program

e

|
1de up of statements and declarations. |
>esses the data (input) entered from the
medium. The information produced by |
as output. 3

must contain two parts: a program
1block. The illustration below shows
a Pascal program. !

PROGRAM identifier;

declarations

BEGIN

program body

END .

arts of a Pascal Program

-am must be a program heading. Inthe |
i

le;

eln is an output statement’);

rogram heading, PROGRAM example;.!
iignsa program name to allthe lines |

!

i
¥

|
I

Program Block

The program block consists of statements and declarations. A
program block must have a program body. Declarations are
optional, but if they are used, they must precede the program
body.

The program body consists of the reserved word BEGIN
followed by the statements that are to be executed and the
reserved word END.,

The line
120 WRITELN('writeln is an output statement');

is the only statement in the previous program that is
performed. Note that a program body can contain no
statements (and thus do nothing). The last line in every Pascal
program must be the word END followed by a period (.).

Inthe remainder of this manual, the reserved word PROGRAM
and the reserved words BEGIN and END that enclose the
program body are printed in uppercase letters in BOLDFACE.

Anillustration of the various elements that comprise a Pascal
program is shown below.

program heading PROGRAM identifier;

declarations LABEL declaration

CONST declaration

TYPE declaration

VAR declaration

PROCEDURE /FUNCT ION
declarations

program body BEGIN

statements

END.

Detailed Structure of a Program

Chapter 3—Computer Programming

Pascal Syntax

Identifiers

Declarations are used in Pascal to define the namesbeing
used in a program. There are LABEL, CONST, TYPE, VAR,
PROCEDURE, and FUNCTION declarations. Declarations arg8
not executed when the computer encounters them; they are 8
used to define names. The computer begins execution with |
the first statement in a program body. Declarations are :
optional, but if used, they must be in the order shown below.
Note that after the LABEL, CONST, TYPE, and VAR i
declarations, PROCEDURE and FUNCTION declarations can
be in any order.

The syntax of a programming language defines the
arrangement of its elements and the construction of its
vocabulary and signs. In Pascal, the vocabulary includes
words (identifiers) and numbers (constants); the signs are
called reserved symbols.

Each word in Pascal is an identifier, and can be entered in
either uppercase or lowercase characters ora combination og
the two. [dentifiers are of two types.

Reserved words have predefined meanings in Pascal and
include words such as PROGRAM, BEG [N, and END. Reserved
words(also called keywords)are displayed or printed in
uppercase letters, regardless of how they are entered from
the keyboard. (Note: When identifiers are entered from the J
playback buffer or from a user-assigned string, the identifier]
is displayed as it was entered.)]

Reserved words must always be followed by a delimiter such)
asaspace, a semicolon, a parenthesis, oranend of line. To §
help you identify these words, reserved words are printed [
uppercase tetters in this manual.

User-defined identifiers are names that you defineina |
program. Identifiers must start with a letter, consist of only
letters and digits, and not be areserved word.

Although you can enter as many as 80 characters foran
identifier, the computer accepts only the first eight |
characters. Any others are discarded (unlike UCSD Pascal, |
which retains all entered characters but uses only the first
eight). A user-defined identifier is always displayed or
printed in lowercase letters regardless of how itisentered |
from the keyboard. You can distinguish between user-
defined identifiers and reserved words by how they are
displayed.

d in Pascal to define the namesbeing |
ere are LABEL, CONST, TYPE, VAR, i

NCTION declarations. Declarations are

e computer encounters them; theyare | Constants
The computer begins execution with

1 program body. Declarations are !

hey must be in the order shown below. ©

BEL, CONST, TYPE, and VAR
YURE and FUUNCTION declarationscan

mming language defines the i
nents and the construction of its

[n Pascal, the vocabulary includes

{ numbers (constants); the signs are
Is. 3

an identifier, and can be entered in
vercase characters or a combination ofI
r0f two types.

predefined meanings in Pascal and
ROGRAM, BEG!N, and END. Reserved
vords) are displayed or printed in
rdless of how they are entered from
‘hen identifiers are entered from the
na user-assigned string, the identifier
itered.)

gt =N S e S

Iways be followed by a delimiter such
a parenthesis, or an end of line. To
words, reserved words are printed in
smanuai.

e

ers are narnes that you defineina %
1st start with aletter, consist of only |
ot be a reserved word. |

*as many as 80 characters for an |

raccepts only the first eight REsee ISl
are discarded (unlike UCSD Pascal,
'd characters but uses only the first
entifier is always displayed or
tersregardless of how it is entered
1can distinguish between user-
reserved words by how they are

£ Chapter 3—Compter Programming

In this manual, identifiers that illustrate where a user-
defined identifier can be used are printed in italics.

A constant is a value that does not change during the
execution of a program. In Pascal, there are four types of
constants: numeric, character, string, and Boolean constants.

Numbers such as 50 and - 34.3 are called numeric constants.
Positive numbers may be written with an optional plus(+)
sign. Negative numbers must be preceded by a minus(-)
sign. Commas and spaces are not allowed in numbers.

Numeric constants written without decimal points are called
integers, The maximum integer allowed is 32767 and is called
MAXINT. If an integer greater than 32767 or less than

- 32767 is entered from the keyboard, an error occurs.

Numeric constants written with a decimal point are called
real numbers. Real numbers may be entered with any number
of digits, but they are rounded to 13 or 14 digits for storage in
the computer. If the number is entered with an odd number
of digits to the left of the decimal point, a maximum of 13
digits are stored. If the number is entered with an even
nuraber of digits to the left of the decimal point, 2 maximum
of 14 digits are stored. Only 10 digits of a real constant are
displayed when a program is running, but all 13 or 14 digits
are used in calculations and are displayed when a program is
listed.

A character constant is asingle character enclosed within
apostrophessuch as'a’,'N',**", or'b’.

A string constant is a sequence of characters enclosed in
apostrophes such as '2301 N. Ash #39' and "Angie''s age is
12°. An apostrophe within a string constant is represented by
two apostrophes.

A Boolean constant is the word TRUE or the word FALSE.

Some of the symbols reserved for use in Pascal denote
operationssuchas +, -, * (multiply), and /(divide). Other
symbols such as; and ' are used for syntactical purposes. The
symbol.. denotes all the intervening values. For example,
1..5 means the numbers 1, 2,3, 4, and 5. All of the reserved
symbols listed on the next page have a predefined meaningin
Pascal and are discussed in later sections. Note that a two-
character symbol cannot have a space between the two
characters.

Chapter 3-—Computer Programming

Honwobieeling
Program I-Il'ggﬂ

<> <

(* *) { }

e
St
—
—

Reserved Symbols in Pascal

Program Lines

The lines in a program must meet certain requirements and
restrictions. These rules are listed below along with some
features of the CC-40 that can facilitate writing your
programs.

Line Numbering Each line in a CC-40 Pascal program must begin with a

number followed by a space. A line number can be any -
integer from 1 through 32766. Line numbers are used only to |
order and edit the program lines.

You can have the computer supply line numbers for your
program by typing NUM (or pressing the FN ¢ keys)and then
pressing the ENTER key. The CC-40 displays 100 followed bt
a space with the cursor positioned where the first character ||
of the line starts. After you type the statement and pressthe
ENTER key, the CC-40 displays the number 110 followed by:
a space and waits for you to enter a statement. When you
have finished entering all of the program lines, presseither
ENTER or BREAK when the next line number appears.

Tnflenguttng

You can optionally specify where the numbering is to start
and what increment is to be used. For example, entering NU Y
1000,20 starts the line numbers at 1000 and uses increments'
of 20,

Note that if you enter the NUM command when there are
program lines in memory, NUM displays a prograru line if one.
already exists for a given line number. If NUM is entered with
no options, program line 100 is displayed if it exists. i

Note also that if a program line exists but its line number is
not in the sequence NUM is using, the line is not displayed.
Forexample, if NUM 115,10 is entered, the numbering beginy
at 115 and increments to 125. If program line 120 is stored in |
memory, it is not displayed.

L
. Chapter 3—Computer Programming

o

I = <> <

r 1

) {* ‘) { }

ved Symbols in Pascal

must meet certain requirements and
s are listed below along with some
hat can facilitate writing your

oy e B L I Y i Fp—

|
seal program must begin with a f
ppace. A line number can be any 3
32766. Line numbers are used only to |
ram lines. i

uter supply line numbers for your i
1 (or pressingthe FN + keys)and then ||

y. The CC-40 displays 100 followed by|

positioned where the first character
youtype the statement and press the
displays the number 110 followed by 4
m to enter a statement. When you |
all of the program lines, press either
nthe nextline number appears.
ify where the numberingistostart ||
-obe used. For example, entering N
wmbers at 1000 and uses increments 1
|
1e NUM command when thereare |
¥y, NUM displays a program line if one |
nline number. If NUM is entered with!
2 100is displayed if it exists. :

1
am line existsbut its line numberis §
M is using, the line is not displayed. |
5,10 is entered, the numbering begin §
3 125. If program line 120 is stored in
red.

Renumbering
<= % Program Lines

Indentation

After you have added and deleted program lines, you may
want to renumber the lines in the program. The CC-40
renumbers the lines ina program when you enter REN (or
RENUMBER).

For example, if the program

100 PROGRAM example;

110 BEGIN

119 WRITELN{'first statement displayed’);

120 WRITELN('writeln is an output statement'):
125 WRITELN(third stiatement displayed’):

130 END.

is stored in the computer and the command REN is entered,
the line numbers will begin at 100 and increment by 10 as
shown below.

100 PROGRAM example;

110 BEGIN

120 WRITELN(' first statement displayed’);

130 WRITELN('writeln is an output statement’):
140 WRITELN(third statement displayed'):

150 END.

You can optionally specify the beginning line number and the
increment for RENUMBER. If using the given (or default)
specifications would cause any line number to be greater than
32766, no line numbers are changed.

Pascalstatements can be indented to make the program more
readable. Statements are often indented a number of spaces
to show the layout of a program. You ean add any number of
spaces between a program line number and the beginning of
the Pascal statement, These spaces are retained when the line
is printed or displayed. Any other superfluous spaces are
deleted.

The reserved words BEGIN and END that enclose the
statements of a program are usually aligned with the reserved
word PROGRAM. The statements that make up the program
body are usually indented two to three spaces to show how
they fit together and to make the program easier to read.

For example, the program from chapter 2 could be indented
asshown on the following page.

Chapter 3—Computer Programming

Punctuation

Multiple-
Statement Lines

Statements on
Multiple Lines

100 PROGRAM example:

11Q BEGIN

120 WRITELN('writeln is an cutput statement’);
130 END.

Aline can be up to 80 characters long, including the line
number. Additional characters typed at the end of theline
replace the 80th character. When a line is entered, the
interpreter removes any extra spaces(other than indention
spaces). Note, however, that when the interpreter listsa iy
Pascalline, it may add some spaces to the line for clarity, If
these added spaces cause the length of the line to exceed 80
characters, an error occurs during the listing.

In Pascal, 2 semicolon is used toend a statement or :
declaration and separate it from the next one. This use of the |
semicolon enables you to enter more than one statement or
declaration on aline and also to continue one statement or
declaration over several lines, The computer ignores spaces
entered on a line and continues reading characters as part ofa |
line until it encounters a semicolon or the reserved word END |
that signals the end of the statement. I

A semicolon is not required to end all statements. For
example, a semicolon is not necessary after the reserved
word BEGIN and is optional before the reserved word END.

You can enter several statements on a line by separating them
with a semicolon. BEGIN must be separated from the g
statement following it and END must be separated from the
statement preceding it by some type of delimiter, suchasa
space or an end of line.

You canenteras many statements on a line as will fit into 80
characters.

For example, the following program is entered on one line.

100 PROGRAM example: BEGIN WRITELN('One line'): ||
WRITELN{'END') END.

If you run the program, press ENTER or CLR after the
message One | ineisdisplayed to see the next line.

A statement can be entered on multiple lines. For example,
the statement

140 WRITELN(' third statement displayed’):

P Chapter 3—Computer Programming

In is an output statement');

ractersilong, including the line

icters typed at the end of the line

r. Whenalineis entered, the

xtra spaces (other than indention

hat when the interpreter lists a

ne spacesto the line for clarity, If
the length of the line to exceed 80

s during the listing,

sed to end a statement or

tfrom the next one. This use of the
nter more than one statement or

Iso to continue one statement or

nes. The computer ignores spaces |
nues reading characters as part of a 2
‘micolon or the reserved word END i

statement.

{to end all statements. For
t necessary after the reserved
Ibefore the reserved word END.

ments on a line by separating them _E [

ust be separated from the

END must be separated from the

ome type of delimiter, suchasa

'ments on a line as will fit into 80

program is entered on one line.

JEGIN WRITELN('One line'):
END.

SENTER or CLR after the
/sed to see the next line.

ynmultiple lines, For example,

tement displayed'):

can be entered on multiple lines as shown below.

140 WRITELN

150 (

160 'third statement displayed’
170)

180 ;

Note that the interpreter continues reading lines until it has
read a complete statement. In this case, the semicolon at line
180 signalsto the interpreter the end of one statement and
the beginning of another.

Comments make a pbrogram easier to understand and can
appear anywhere in a program except in the middle of an
identifier, constant, reserved word, or two-character symbol.
The text of a comment is ignored by the computer.

Comments are placed ina program by enclosing them in the
symbols(* and *)or { and }. These symbols may not be mixed.
You can, however, use one type of symbol to enclose a
comment that contains another comment enclosed by the
other type of symbol. Note that a comment cannot be
extended to the next line. The following example illustrates
the use of comments.

100 PROGRAM example;

110 BEGIN (* start of program body *

120 WRITELN('writeln is an output statement’):
130 {Only statement}

140 END. (* example *)

It is good programming practice to include the name of the
program in a comment on the last line of a program.

Note: Comments can contain specific instructions for the
interpreter. Thisuse of a comment is discussed in the next
section and is not ignored by the computer.,

There are three options that you can specify to the
interpreter to implement as it executes a program. The
options enable you to:

* Have the computer wait or not wait after characters are
sent to the display.

» Turn on or off an audible tone when the program is waiting
for input from the console.

25

¥
Chapter 3—Computer Programming i
i
t

*» Have the computer check or not check input/output
operations.

Anoption is specified in a comment anywhere ina program
after the reserved word BEGIN of the program body. Asthe
computer scans the program fines during execution, an
interpreter option is turned on or off as specified only if the
statement containing the comment is executed. Only one
option can be included per comment.

To specify an option, placea $ immediately after the opening
delimiter, (* or { ina comment, followed by the letter w

(wait), a (audible tone), or i (input/output check). A plus sign
(+)written after the letter causes the computer to turn on /
the option; a negative sign(-) written after the letter causes :
the computer to turn off the option.

For example, the following program line includesa comment |
containing an interpreter option.

110 BEGIN {$w-}

This comment causes the interpreter to turn off the wait that
occurs when characters are displayed and continue program
execution, The characters may be displayed so quickly,
however, that you may not have time to view them.

For example, when the WRITELN in line 120 in the following |
program is performed, the computer leaves the characters in
the display until the ENTER or CLR key is pressed. When
either key is pressed, the comment causes the computer to
turn off the wait option. Without the wait, the output is
displayed so quickly that you cannot read it. Afterthe
WRITELN is performed, the wait option is turned back on in
line 130 and the characters printed by line 140 remain in the
display. Program execution is stopped until you press the
ENTER key.

100 PROGRAM example;

110 BEGIN

120 WRITELN('first statement displayed'); {$w-}

130 {turn off wait})

140 WRITELN('writeln is an output statement’); { $w+}
150 {turn on wait}

160 WRITELN(third statement displayed’);

170 END.

26

ck or not check input/output

-comment anywhere in a program
'EGINof the program body. As the
am lines during execution, an

ed on or off as specified only if the
comment is executed. Only one
rcomment.

eadimmediately after the opening
nent, followed by the letter w

t(input/output check). A plus sign
r causes the computer to turni on
1(~)written after the letter causes
1e option.

g program line includesa comment
wption.

aterpreter to turn off the wait that
e displayed and continue program
may be displayed so quickly,

- have time to view them.

ATELN inline 120 in the following |

computer leaves the characters in
R or CLR key is pressed. When
rmment causes the computer to
ithout the wait, the output is
wcannot read it. Afterthe
2 wait option is turned back on in
printed by line 140 remain in the
isstopped until you press the

W’y {sw-})
tatement ") ; { $w+)

yed’)

|

2

e = —irw. ¢

- ?’.:’l

iy
1

Chapter 3—Computer Programming

Output Statements

The following program line turns on the automatic beep that
occurs when input is expected from the keyboard.

110 BEGIN {S$a+}

The third option enables you to determine if input and output
operations are checked by the interpreter during program
execution. If an input/output error occurs, the program is
aborted. You can perform your own checking within the
program, however, by turning off the input/output check
option as shown below.

190 {$i-}
200 WRITELN('No 1,0 check');

Checking input/output operations in a program is discussed
laterin chapter 8.

After the RUN command is entered and the interpreter
encounters the reserved word BEGIN in the program body,
the interpreter turns on the default options shown below.

Letter Default Option

The interpreter suspends execution of a
program when the program writes
characters to the display. This delay gives
you time to view the display. When either
the CLR or ENTER key is pressed,
program execution is resumed.

w +

a An audible tone (or beep) does not occur
when the program is prompting for input
from the console.

The interpreter checks input/output
operations, See [ORESULT in chapter 8.

OQutput statements are used to display the results of a
program. Anoutput statement includes {in parentheses)a list
of items to be printed. The items in the list are separated by
commas. Any item enclosed in apostrophes is called a
character string and is printed exactly as it appears between
the apostrophes. Any item not enclosed in apostrophes has its
value printed, with no blanks printed before or after it.

Chapter 3—Computer Programming

The following sections describe using output statements to
display data. Refer to chapter 8 for information on using
output statements with files.

kS
-
The WRITELN This statement displays the data listed within the paa.remhe.-s@.sr,i
Statement and then advances the cursor to the next line. Normally, the
interpreter option wait {w)is turned on so that you have time |
to view the displayed data. The ENTER or CLR key must be
pressed to continue program execution when the walit option
isin effect.

The WRITE This statement displays the data listed within the parentheses |
Statement and leaves the cursor at the end of the displayed data. The
next input/output operation to the display begins at the
location of the cursor. Normally, the interpreter option wait
(w}is turned off before a WRITE statement because more
data is going to be either displayed or requested on the same
line.

When the following program is run, the wait option (turned

on when the interpreter encounters the reserved word BEGIN |
inline 110} causes the data displayed by the first WRITE
statement to remain in the display until the ENTER keyis
pressed. The next output is then displayed and also remains

in the display until the ENTER key is pressed.

Program Display

100 PROGRAM examplel;

110 BEGIN

120 WRITE(2+5,' is the answer'):

130 WRITE(' for number 10");

140 WRITELN;

150 END. (*examplel*®)

Note that line 140 actually displays nothing, but the
charactersinthe display remain there until ENTER is
pressed. Line 140 advances the cursor to the next line, where
the next input or output will begin.

lescribe using output statements to
iapter 8 for information on using
files.

the data listed within the parentheses |

ursor to the next line. Normally, the
‘w)is turned on so that you have time
ta. The ENTER or CLR key must be
fram execution when the wait option

the data listed within the parentheses |

the end of the displayed data. The
tion to the display begins at the
ormally, the interpreter option wait
-.WRITE statement because more
displayed or requested on the same

rarm is run, the wait option (turned
encounters the reserved word BEGIN
ta displayed by the first WRITE

1e display until the ENTER key is

.is then displayed and also remains
NTER key is pressed.

Chapter 3—Computer Programming

In the following program, the wait option is turned off before
the WRITE statements are executed. The wait option is
turned back on before the WRITELN in line 140 moves the
cursor to the first column of the next line.

Program Display

100 PROGRAM example?2;

110 BEGIN {S$w-}

120 WRITE(2+45,' is the answer');
130 WRITE{" for number 10');

140 WRITELN {$w+}; 7 1s the answer for number 10

150 END. (*example2®)

In the following program, each line of output is displayed on a
separate line with the WRITELN statement, The ENTER key
can be pressed to view each succeedingline.

Program Display

Display |

7 is the answer

is the answer for number 10

is the answer for number 10

y displays nothing, but the

remain there until ENTER is

es the cursor to the next line, where
vill begin.

100 PROGRAM example3;

110 BEGIN

120 WRITELN(2+5,' is the answer'); 7 is the answer
130 WRITELN(' for number 107): for number 10
140 WRITELN,; {(displays a blank line and advances the
150 END. (*example3*) cursor to the next |ine)
Terminating The three valid methods of terminating program execution
Program include the reserved word END, the HALT statement, and the
Execution EXIT statement.

The Reserved The reserved word END, followed by a period (.), appears
Word END after the last statement in a program. When END followed by a

period is encountered, program execution stops. Note that
the period must immediately follow END.

29

Chapter 3—Computer Programming

The HALT
Statement

The EXIT
Statement

Using Statements
without Line
Numbers

Error Handling

The HALT statement is used in abnormal situations to
terminate program execution before the reserved word END.
When HALT is executed, the program aborts, displaying the
message Programmed Halt.

The EXIT statement can be used to terminate a program
before the reserved word END. When EXIT terminates
program execution, no message is displayed.

Using the HALT and EXIT statements to end program
execution is described in chapter 7.

Many Pascal statements can be performed immediately by
entering them without line numbers. In CC-40 Pascal, this
type of statement is called an imperative and is executed as
soon asthe ENTER key is pressed. For example, the line

WRITELN('writeln is an output statement’)

displays the messagewriteln is an output statement
immediately after the ENTER key is pressed.

Note that an imperative must fit on a single line and must end
with a semicolon. Refer to appendix C in the CC-40 Pascal
EReference Guide for a list of the statements that can be used
asimperatives.

As you begin writing programs, you will find that some types
of errors produce an error message as soon as you enter the
line. You can use the SHIFT PB feature to display the
erroneous line and use the edit keys to correct it.

Other types of errors in a program are not detected by the
interpreter until you run the program. Errors can be detected
attwo different times after the RUN comimand has been
entered. The first time is when the computer scans the
instructions to detect specific types of errors before the :
program actually begins execution. The second time is during }
program execution. Errors detected at either time cause
program execution to terminate.

For example, the following program has two errorsin it.

100 PROGRAM example;

110 BEGIN

120 WRITELN('writeln is an output statement'):
130 END

sused in abnormal situations to

cution before the reserved word END.

'd, the program aborts, displaying the
Halt.

n be used to terminate a program
rd END. When EXIT terminates
message is displayed.

{IT statements to end program
inchapter 7.

s can be performed immediately by
line numbers. In CC-40 Pascal, this
led an imperative and is executed as
is pressed. For example, the line

s an output statement');

“i1teln 1s an output statement
‘NTER key is pressed.

:must fit on a single line and must end
toappendix Cinthe CC-40 Pascal
st of the statements that can be used

ygrams, you will find that some types
Oor message as soon as you enter the
IFT PB feature to display the

he edit keys to correct it.

a programare not detected by the

1 the program. Errors can be detected

‘ter the RUN command has been

s when the computerscansthe

ecific types of errors before the
execution. The second time is during
asdetected at either time cause
rminate.

ing program has two errorsin it.

eln is an output statement');

Chapter 3—Computer Programming

Lines 100, 110, and 130 can be entered and stored in memory.
However, when you try to enter line 120, the error indicator
appears and the error message | | legal character in
text isdisplayed. To correct the line, press SHIFT f to display
it, and then change the quotation mark to an apostrophe.

When you run the program, the message i | legal nesting
isdisplayed. Press - to display the error code and the line
number of the erroneous line. In this case, the error code and
line number are E27 L130.

To display the line specified in the error message, pressfor 4.
Use the edit keys to place the period after the word END and
enter the corrected line. The program will then run and
terminate correctly.

Occasionally the line displayed as causing an error may not be
the source of the problem. Values generated or acticns taken
elsewhere in the program may cause the error. The line
number displayed is the line where the interpreter detected
an error. For example, enter the following program.

100 PROGRAM example

110 BEGIN

120 WRITELN(' writeln is an output statement');
130 END.

When you run the program the error message ' ;' expected
isdisplayed. When you press the = key, the error code and
line numberareE14 L110. Presstor#todisplay line 110,
Line 110 does not have an errorin it, but line 100 does. After
the interpreter scanned line 100, it moved toline 110,
expecting to find a semicolon to separate the statements on
lines 100 and 110. Therefore line 110s displayed as the
erroneous line because the interpreter detected a missing
semicolon during its scan of line 110. Press t to display line
100 and enter a semicolon after the word exampl e.

Note that if an error code is preceded by aW rather thanan E,
the message displayed was a warning and not an error.
Program execution continues after a warning when the
ENTER key is pressed. Remember that the line number
displayed in an error {or warning) message is an indication of
where the interpreter detected the error (or warning).

Refer toappendix I in the CC—40 Pascal Reference Guidefora
list of the error codes and messages.

Chapter 3—Computer Programming

Debugging
a Program

When a program does not work the way you intended, there
arelogical errors in it (called *‘bugs’ in computer usage).
Testing a program to find these bugs is called “debugging’’ a
program. When a program does not work properly, think
about what could be wrong, then devise tests such as
displaying values throughout the program to aid youin
finding the bugs.

The BREAK command can be used to stop a program at

specific lines and allow you to determine what is happening

inthe program. When a program stops at a breakpoint, you | npder il
can display values in the program. :

Forexample, breakpoints can be set at lines 120 and 130 in
the program

100 PROGRAM example2;

110 BEGIN

120 WRITE(2+5,' is the answer’):
130 WRITE(' for number 10');
140 WRITELN;

160 END. (*example2*)

by entering the BREAK command before the RUN command
asshown below.

BREAK 120,130
RUN

After the RUN command is entered, the breakpoint at line
120 causes the message Break to be displayed.

Preasthe CLR or ENTER Keys to erase the message and you
can then perform any imperative statement. Enter CON to
resume program execution. The program then displays the
message 7 is the answer

from the WRITE at line 120. Press the ENTER key and the
breakpoint at line 130 stops the program and displays the
Break message. Press the ENTER or CLR keysto erase the
message and enter CON toresume program execution.
The message

for number 10

is then displayed. Press the ENTER key to proceed to the
WRITELN in line 140. The message remainsin the display
until the ENTER key is pressed again.

1ot work the way youintended, there
:alled *‘bugs’’ in computer usage).

1d these bugsiscalled *‘debugging’” a
‘am does not work properly, think
rong, then devise tests such as

ighout the program to aid you in

can be used to stop a program at

you to determine what is happening
L program stops at a breakpoint, you
€ program.

nts can be set atlines 120 and 130 in

ez;

is the answer'),
number 10');

12%)

{command before the RUN command

1d is entered, the breakpoint at line
:Break to be displayed.

& keys to erase the message and you
mperative statement. Enter CON to
tion. The program then displays the
er

120, Press the ENTER key and the
itops the program and displays the
he ENTER or CLR keysto erase the
N toresume program execution.

sthe ENTER key to proceed to the
The message remains in the display
pressed again.

Chapter 3—Computer Programming

Note that for statements entered on multiple lines, the
breakpoint occurs at the beginning of the first executed
statement on or after the specified line. Breakpoints entered
in a program continue to stop program execution until you
use the UNBREAK command to delete the breakpoints.

Every Pascal program must contain two parts. These
partsare S Simes Ll i
and ___

Chapter 3

2. A Pascal program body is enclosed between the reserved
words i
and .

A program block consists of declarationsand __ A=

Declarations are used to names.

Declarations that are used in a program must appear in
what order?

followed by

Each word in Pascal is called an
7. Which of the following user-defined identifiers are valid?
measure
Spercent
printheader

END

Chapter 3—Computer Programming

accountl
sales-tx

8. Name the four types of constants.

9. InPascal, a number written with a decimal point is called
a___ _ number.

10. Integers greater than _
orlessthan cannot be entered from the keyboard

11. Anapostrophe withina character string is represented as

12. What is wrong with the following comment?

(*Two-character symbels cannot have a
space between them. *)

. The computer supplies line numbers for you when you
enterthe_______ command and renumbers the]
program lines when you enter the command,

. Themaximum lengthofalineis______ characters. |

. What isthe errorin the following line?

100 PROGRAM example; BEGIN WRITELN
("One line') WRITELN('end'); END.

- Comments are enclosed in the symbols ____
or and

. What does the following interpreter option do?

150 BEGIN {$w-}

E | Chapter 3—Computer Programming

18. Write the output produced by the following program
segments.

150 WRITE('The answer is '):

ypes of constants. 160 WRITELN(10) :

170 WRITELN(' The answer is ') .
180 WRITELN(10) ;

- Write a program that displays the following.

5+5 is 10

ber written with a decimal point is called §
nber. i

20. Write a program that displays the following.

than ____
—_cannot be entered from the keyboard, 1

***The results are listed below®*®*
x=5
y=10

‘ithin a character string is represented as |

21. The three valid methods of terminating program
execution are

ith the following comment?

acter symbols cannot have a
n them. *)

pplies line numbers for you when you
.command and renumbers the
en you enter the command.

22. Animperative must fit on a single line and must end with
a

wgthofalineis____ characters,

inthe following line? 23. Find two errors in the following program.

-
! .:100 PROGRAM example:

P 110 WRITELN('writeln is an output statement'):
.}330 END

cample, BEGIN WRITELN
YRITELN{'end'); END.

closedinthesymbols______ and
and

lowing interpreter option do?

}

Chapter 4—Expressions

Introduction

Constant
Declarations

Expressions are the calculations that you assemble in a
program for the computer to perform. Before you can write
expressions, you must be familiar with the elements of
expressions and the rules for combining them. These
elements—constants, variables, operators, and functions—
are described in the following sections.

A constant declaration is used to define the value of a user-
defined identifier as a numeric, string, character, or Boolean
constant. The value of a constant identifier cannot be altered
during program execution.

A constant declaration in its simplest form is
CONST identifiersvalue;

where CONST informs the interpreter that the specified
identifier has the value of the indicated numeric, character,
string, or Boolean constant. For example, the identifier
salestax canbe defined as the number 0.05 by includingit
ina CONST declaration.

CONST salestax=0.05;

You can declare several constantsina program, Note,
however, that the reserved word CONST can appear only
once in a declaration section. In the lines

CONST salestax=0.05;
heading='sales tax';
age=21;
grade="A":
Flag=TRUE;

five constants are defined foruseina program.
It is good programming to declare anumber or a string of

characters that is used more than once ina programasa
constant. Then if the value of the constant has to be changed,

you need to edit only the CONST declaration, thus reducing |

the chance for error.

In the following program, which prints the circumference of |
circles with diameters of 2 cm, 10in., and 3 m, a constant
declaration is used to define the value of the constant
identifier pi with the value of n (3. 14159265359).

.E.'F_,;."_H'_I:I-' H

[s
T =

el

 Varlable
Duelaration|

:alculations that you assembleina
puterto perform. Before you can write
st be familiar with the elements of :
‘ules for combining them. These {
» variables, operators, and functions— §

ollowingsections, :

nisused to define the value of 2 user-
‘numeric, string, character, or Boolean
faconstant identifier cannot be altered
ition.

1in its simplest form is
e,
. Yarlable
‘he interpreter that the specified Declarations

eof the indicated numeric, character,
tant. Forexampie, the identifier
ed asthe number 0.05 by including it

&,

constantsin a program. Note,
ved word CONST can appear only
:tion. In the lines

¥;
5 tax';

dforuseina program.

vdeclare anumberora string of
orethanonceina programasa]
le of the constant has to be changed, f
CONST declaration, thus reducing

|
which prints the circumference of §
*em, 10in., and 3m, a constant |

ne the value of the constant
teof n(3. 14159265359).

100 PROGRAM circum;
110 CONST pi=3.14159265359;

120 BEGIN

130 WRITELN('Circum. of 2 cm: Lpit2," em');
140 WRITELN('Circum. of 9 in: Lpi*e, in'y;
150 WRITELN{ 'Circum. of 3 m: Lpi*3, mY);
160 END.

If you run the program, the following output is displayed.
Circum. of 2 em: 6.283185307 cm

Circum. of 9 in: 28.27433388 in

Circum. of 3 m: 9.424777961 m

When only constants are used ina program, a program can
become very long if it has to perform many computations. If

the values of items can change in a program, the program is
much easier to write and much more usefu).

Variables are used when the values of itemsin a program vary
orchange. A variable is a name given to a memory location in

the computer. You can store a value in the location and then
change it in the program as many times as needed.

Before you can use a variable in a Pascal program, you must
defineitina VAR (for variable) declaration. VARiable

declarations must appear after any CONSTant declarations.
You can define as many variables as you need in a prograim;
however, the reserved word VAR can appearonlyonceina
declaration section.

A variable declaration in its simplest form is
VAR identifier: type;

where VAR informs the interpreter that a variable with a
name of identifier is being declared with a specified type. A
variable's type determines how the variable can beusedina
program. There are five fundamenta) typesin Pascal that are
used to form expressions. These five types are listed below.

* INTEGER
* REAL

* CHAR

* STRING

* BOOLEAN

g o W s oy,

Chapter 4—Expressions

INTEGER Type

The following VAR declaration defines some variables and
their types.

VAR lenth,width,height:REAL;
counter, index: INTEGER;
payment :REAL;
name:STRING;
grade:CHAR;
test:BOOLEAN:

A program with the above VAR declaration in it can use the
following variables.

* lenth,width, height, and payment will contain REAL
values

¢ counter and i ndex will contain INTEGER values

* name will contain a character string

* grade will contain a single character

» test will contain a BOOLEAN value

A program cannot use a variable that has not been declared in
a VAR declaration. Each time a variable is referenced, the
computer verifies that the variable is used in the program as it
was declared. If the variable is used improperly, an error
message is displayed. For example, CHAR variables cannot be
muliiplied and INTEGER variables cannot have REAL values,

Remember that although the value of a variable may be
changed at any time in a program, the type of a variable
cannot be changed.

Integersare the natural counting numbers, their negatives,
and the number zero. The maximum integer allowed in CC-40
Pascal, called MAXINT, is 32767; the smallest integer allowed
is —32767. Note that — 32768 isallowed in computations in
the computer, but cannot be entered from the keyboard.

The following are valid integers in Pascal.
39 +40
1] MAXINT

-543
Some invalid integers are shown below.
5,280 nocomma allowed

3.14 no decimal point allowed
40394 value too large for an integer

wration defines some variables and

ght :REAL;
INTEGER;

ve VAR declaration in it can use the

,and payment will contain REAL

ill contain INTEGER values
wracter string

ngle character

OLEAN value

variable that has not been declared in
1time a variable is referenced, the

he variable is used in the program asit
iable is used improperly, an error

s example, CHAR variables cannot be
R variables cannot have REAL values.

hthe value of a variable may be
Lprogram, the type of a variable

counting numbers, their negatives,

he maximum integer allowed in CC-40 |

is 32767; the smallest integer allowed
32768 is allowed in computations in
ot be entered from the keyboard.

integersin Pascal.

INT

re shown below.

wed
int allowed
> foraninteger

Chapter 4—Expressions

REAL Type Real numbers in Pascal correspond to the decimal numbers or
floating-peint numbers. Real numbers in the CC-40 can have
amagnitude as small as + 1.0E ~ 128 or aslarge as
+9.9999999999999F + 127. Only 10 digits of a real constant
are displayed when a program is running, but all 13o0r14
digits are used in calculations and are displayed whena
program is listed.

In Pascal, a real number must have the following:

» a decimal point
» at least one digit to the left of the decimal point
« at least one digit to the right of the decimal point

The following are examples of real valuesin Pascal.

+345.0 2.236456

- 345.0 0.0
0.1 40394.0

Examples of invalid real values are shown below.

+345 no decimal point and no digit to the right of

the decimal point
345 no decimal point and no digit to the right of

the decimal point

1 digit missing to the left of the decimal point

2.236456 - minus sign must precede the number

0 no decimal point and no digit to the right of
the decimal point

40,394.0 no commas allowed in numbers

Note that an integer value can be used in computations fora
real value because the interpreter can convert an integer to
its real equivalent. For example, if the integer 7isused in
computations with real values, the interpreter converts itto
7.0.

Real numbers can also be written in scientific notation. Areal
value is automatically displayed in scientific notation when
its magnitude is 9999999999.49995 or greater. In scientific
notation, a number is expressed ina format in whicha
number (the mantissa) is multiplied by 10 raised to a power
(the exponent).

For example, the number 12345678 can be expressed in
scientific notation as 1.2345678E + 7, which represents
1.2345678 % 107. The number 0.00000075 is expressed in

39

Chapter 4—Expressions

CHAR Type

STRING Type

scientific notation as 7.5E - 7, which represents 7.5 x 10 7. In|
Pascal, numbersrepresented in scientific notation cannot be |
written with spacesin them, Therefore, the number7.5 E-T
must be written without aspaceas7.5E - 7.

When a number is displayed in scientific notation, the
computer displays a maximum of nine digits. If the exponent
has two digits, the mantissa is limited to seven digits. When
the exponent has three digits, the mantissa is limited to six
digits.

Some examples of real numbers in scientific notation are
shown below.

L.717172E+7 1.2E-5

A character is any symbol that is in the CC-40 character set.
In Pascal, character constants are enclosed in apostrophes.

Some examples of characters are shown below,

wr -Ns

|?| l.B!

97 g

& % r |4|

'*"7 (The character constant apostrophe must be
represented as two apostrophes inside the enclosing
apostrophes.)

A stringis a sequence of characters enclosed in apostrophes.

The following are valid string constants.

‘Pascal language’
‘the cat'’s meow’ (embedded single quotes are typed twice)
(the empty string)}

You can specify the maximum length of a string variable by
following the reserved word STRING with an integer constant
enclosed in brackets. This integer must be from 1 through

255. If you do not specify the length of a string variable, a i
default value of 80 characters is used. A string cannot contain
more characters than its specified (or default}length. A string
with no charactersis called a null string and hasalength of |
Zero.

as 7.5E -7, which represents 7.5 x 10-7,

Presented in scientific notation cannot bg
sinthem, Therefore, the number 7.5 E -1
i

thout a space as 7.5E - 7.

isplayed in scientific notation, the

tmaximum of nine digits, If the exponent!

1antissa is limited to seven digits. When
ree digits, the mantissa is limited to six

'al numbers in scientific notation are

2E-5

mbol that is in the CC-40 character set.

ronstants are enclosed in apostrophes,
aracters are shown below,

iNv
iBl
(#:
gy
constant apostrophe must be
two apostrophes inside the enclosing

of charactersenclosed in apostrophes. |

d string constants,

redded single quotes are typed twice)
ampty string)

wximum lengthof a string variable by

word STRING with an integer constant |t

‘his integer must be from 1 through
fy the lengthof a string variable, a
racters isused. A string cannot contain,

s specified (or default) length. A string &

lled anullstringand hasa length of

ptor 4—Expressions

[n

Examples of valid string variables are shown below.

VAR heading:STRING:
7 " (* by default, maximum length is 80 *)
4 grafline:STRING[200]; (* max length 200 *)

A string's maximum length specifies the maximum length
that the string can be throughout the program. The dynamic
tength of a string is its actual length and is equal to the
number of characters that are currently in the string. The
dynamic length of a string may change during the execution
of a program, but it may never be greater than the string’s
maximum length.

The characters of a string are numbered from left to right
beginning with 1 and continuing to the last character
currently in the string. This numbering system is called
indexing. To access a characterin a string, write the name of
the string followed by the character's index enclosed in
brackets. For example, if the string variables prog|lang and
versioncontain the characters “PASCAL" and T,
respectively,

proglang[1] contains *'P"*
progiang[5] contains "*A™"
version[1] contains ‘T

Note that if a string is indexed past the last character

currently in it, an error occurs. The empty string cannot be
indexed.

A STRING data type contains zero or more characters. Note,
however, that when an identifier is defined in a CONST
declaration,

» an identifier defined with zero or more than one characteris
considered a STRING constant.,

* an identifier defined with one character is considered a
CHAR constant and must be used accordingly.

For example, suppose the following declarations are entered
in a program.

CONST strnamel="abc':
strname2="";
strname3='a’:

VAR strdata:STRING;

1ry

Chapter 4—Exp

Chapter 4—Expressions

The value of st rnamel and the value of st rname2 can be
stored in the variable st rdata (which is aSTRING type).

However the value of st rname3 cannot be storedin st rdataf
because st rname3 has exactly one character, making its type
CHAR rather than STRING.

Boolean data types have a value of TRUE or FALSE. These
values, TRUE and FALSE, are called predefined constants in
Pascal. Note that when Boolean types are compared, FALSE
isdefined to be less than TRUE.

BOOLEAN Type

Setting the Values Initially, all the variables declared in a Pascal program are
of Variables undefined. To give a value to a variable, you must store a

value in the memory location reserved for that variable by
using an assignment statement or an input statement.

Assignment The assignment statement is used to store values in variabled

Statements An assignment statement uses the symbol : = that is called tt
assignment operator. The : = symbol should be read as :
“*becomes equal to’’ and should not be interpreted as an
ordinary equals sign. The equals sign by itself cannot be used.
as an assignment operator.

lenth:=10.5: Storesthereal value 10.5 inthelocation |

called lenth :

counter:=25; Storesthe integer value 25in the location!

called counter

name:='Brian' ; Storesthestring *‘Brian’" in the location ||

| called name]
i grade:="A'; Storesthecharacter ‘A inthe location
called grade !

test:=TRUE; Stores the Boolean value TRUE in the

location called test

The left side of the assignment statement is the name of the
location in memory where the value on the right side is
stored, The program

100 PROGRAM exvar;
110 VAR a,b: INTEGER;

120 BEGIN
130 a:=3;
140 b:=5;

150 WRITELN{' The values of the variables
are' ,a,' and ',b);
160 END. (* exvar *)

mel and the value of gt rnamez can be
le strdata(whichisa STRING type). "
of strname3 cannot be storedin st rdaty

has exactly one character, making its typel
iTRING. e

havea value of TRUE or FALSE. These
ALSE, are called predefined constants inf

en Boolean typesare compared, FALSE |
hanTRUE.

iblesdeclaredina Pascal program are
valuetoa variable, you must storea
location reserved for that variable by
statement oran input statement.

wind should not be interpreted asan ;

The equals sign by itself cannot be used 4
-ator. A

res the real value 10.5in the location
ed lenth

resthe integer value 25 in the location
ed counter

esthe string *'Brian"
ed name

‘esthe character * A"
xd grade

esthe Boolean value TRUE in the
tion called test

in the location

inthe location

jnment statement is the name of the
ere the value on the right side is

? values of the variables
1 .b);
3}

Chapter 4—Expressions

the output below.

The values of the variables are 3 and 5

Theright side of an a
first, regardless of w

statement,

Xi=Z;

stores the values 3 and

the computer determines the value stored in the location

named z and stores the sa.
oth x and z then have th

contents of x are destroyed.

100 PROGRAM exvar;
110 VAR a.b: INTEGER;

120 BEGIN
130 a: =35
140 b:=23;
150 a:=b;
160 b:=a
170

a,' and
180 END.

produces the output shown below.

The vailues of a

WRITELN(The vaiues of a ang b are ',
".b),
(" exvar *)

and b are 23 ang 23

In an assignment stateme
variable must be of the sa

however, that integ
variables.

REAL value.

computer finds the inte
real equivalent, multj
in ¢. A similar process

The following program defines a constant called pi thatisa
The variables a and b are INTEGER; the
variables ¢ and d are REAL. Whencis assigned a value, the
ger value stored in a, converts ittoits
pliesitby pi, and stores the real result
Is used to assign a value to d.

100 PROGRAM exvar;

110 CONST pi=3, 14159265359

120 VAR a,b: INTEGER;

130

c,d:REAL;

Sinaandb, respectively, asshownin

ssignment statement
hat va

isalways executed
riable appears on the left. In the

me value in the location called x.
me value. The previous
The program

nt, the value being assigned toa
me data type as the variabie. Note,
er values can be assigned to real

Chapter 4—Expressions

Input Statements

140 BEGIN

150 a:=3;

160 b:=5:

170 c:=a*pi;

180 d:=b*pi;

190 WRITELN(a,' ' ,¢);
200 WRITELN(b,® ', d);
210 END. (* exvar *)

The output from the program is shown below.
3 9.424777961
5 15.70796327

In Pascal, the READ and READLN statementsareusedto |
input data. Aninput statement is used to store in avariableg
value entered from the keyboard or read from a file. An inpl
statement contains (in parentheses) one or more variables |
that are to be assigned a value or values, A variable included |

inan input statement must be an INTEGER, REAL, CHAR, o
STRING type; the value entered must be a valid data type for
that variable type, ;

For example, when the input statement
160 READ(x):

is performed, the computer waits until a value is entered ;
from the keyboard. When a value is entered, it is stored in the
variable x. :

Inthe following program, the integer value entered from t

keyboard is stored in the INTEGER variable a and then i
displayed. The next value entered can be either an integer or|
real value because it is stored in the REAL variable x. :

100 PROGRAM exinput;

110 VAR a: INTEGER:

120 x:REAL :

130 BEGIN

140 READ(a) ; ,
150 WRITELN(' a= ', a):
160 READ(x) ;

170 WRITELN(' x= ',x):
180 END. (* exinput ")

ter 4—Exgressions

,e)
Td);
r *)

program is shown below.

ind READLN statements are used to

statement is used to store in a variable a
e keyboard or read fromafile. An inpuf

n parentheses) one or more variables

1a valueor values. A variable included
must be an INTEGER, REAL, CHAR, or’
1e entered must be a valid data type for

e input statement

puter waits until a value is entered

hen a value isentered, it isstored in the

im, the integer value entered from the
he INTEGER variable a and then

lue entered can be either an integeror
stored inthe REAL variable x.

1t *)

If 12 is entered for a, the display contains the following after
the first WRITELN is executed.

a= 12

If 7 is entered for x, the display contains the following after
the second WRITELN is executed.

x= 7.0

If an input statement contains two or more variables, they
must be separated by commas. If x, y, and z have been
declared INTEGER variables and the statement

160 READ(x,y,Z);

is executed, the computer waits until three integer values
have been entered from the keyboard. Each value entered is
stored in the specified variable as soon asit is entered. When
more than one value is being entered, the values can be
separated by one or more spaces or can be entered on
different lines.

For example, the following program accepts an integer value
for a, areal value for x, and an integer value for b. The values
can be entered on one, two, or three lines. If more than one
value is entered on a line, the values must be separated by at
least one space.

100 PROGRAM exinput:
110 VAR a,b:INTEGER;

120 x:REAL;

130 BEGIN

140 READLN(a,x,b);

150 WRITELN(' a= ",a,’ X= ',x,"' b= "',b):
160 END. (* exinput *)

If the program is run and the values 71, 7.12, and 40 are
entered, the program displays the cutput shown below.

a= 71

x= 7.12 b= 40

When the computer is reading data to assign to an INTEGER
ora REAL type variable, all leading blanks and ends of lines
are skipped until a nonblank character is reached, If the

nonblank character is not a sign or a digit, an error occurs.

Chapter 4—Expressions $Uh

All characters after the nonblank character are read until a |
nonnumeric character isreached, For an INTEGER type, the
nonnumeric character causes the computer to stop reading
characters for that integer variable. For a REAL type, all
characters after the nonblank are read until 2 nonnumeric
character is reached that is not a valid character for a numh
expressed in either decimal or scientific notation.

Bl R

The value 39.0 may be entered as

39.0 (decimal notation)

or

+3.9E + 01 (scientific notation)

or

39 (aninteger, which may be entered for a real variable)

For example, the following program accepts three REAL
values from the keyboard and assigns the valuesto x, v,
and z.

100 PROGRAM exread;
1 110 VAR x,y,z:REAL;

120 BEGIN .J
130 READLN{x,y,z});
140 WRITELN(' x= ", x,' y=".y," z= ".2) {8
150 END. (* exread *) 1

s
If you enter the input line shown below, the program display il

the characters shown in the output line.

Input: 39.0 +3.9E +01 39
Output: x= 39.0 y= 39.0 z= 39.0

For a STRING type, all characters are read up to the end-of-
line (ENTER) character, For a CHAR type, the character

pointed to by the cursor isstored in the variable and the

cursor advances one column. If the character just read is the
last one on the line, the cursor then points to the end-of-line
(ENTER}) character. If the end-of-line character isread, a |
space is stored in the CHAR variable and the cursor moves tg
the first character on the next line. :

ipter 4—Ex

er the nonblank character are read until 4:.ﬁ
acterisreached. Foran INTEGER type, ti

rbe entered as

iation)
tific notation)

hich may be entered for a rey) variable}

-owing program accepts three REAL
‘oard and assigns the valuesto x, y,

ad;
iL;

z);

= X ye=

; YUz 2y
d =) '

ine shown below, the brogram display
h the output line.

+3.9E + 01 39
y= 39.0 2= 390

‘haracters are read up to the end-of-
-Fora CHAR type, the character
‘isstored in the variable and the |
umn. If the character just read is the

pter 4—Expressions

The READLN Statement

The READLN statement stores values in its variables, ignores
any other characters to the end of the line, and then moves
past the end-of-line character to position the cursor to the
first character in the next line. For example, the program

100 PROGRAM exreadin:
110 VAR X! INTEGER;

120 ¥, Z:REAL:

130 BEGIN

140 READLN(x,y) :

150 READLN(z) ;

160 WRITELN(x) ;

170 WRITELN(y)

180 WRITELN(z):

190 END. (* exreadin *)

reads and displays one integerand two reg| values. If the
values shown in the input line are entered, the program
displays the values shown in the output line.

Input: 12 7.1239¢3 45.5
12.739490

Output: 12 7123.9
12.73949

Note that the number 45.5 is ignored by the READLN
statement because there js No variable to assign it to as the
READLN statement moves bast the end of the line to the first
characterin the next line,

When you execute a READLN statement with no variables in
parentheses, no data is read and the input cursorjs moved to
the first character in the next line. For exampie, the
statement

READLN:

moves past the end-of -line marker and positions the cursor at
the first character inthe next line.

The READ Statement
The READ statement allows the hext input statement (READ
orREADLN)to get values from the same line. A READ

statement also reads to the end-of-line character, but jt does

Chapter 4—Expressions

If the first READLN statement in the previous example is
changed to a READ statement, the input line can be entered.
onone line, as shown below.

100 PROGRAM exread;
110 VAR x: INTEGER:
120 y,z:REAL;

130 BEGIN

140 READ(x,vy);

150 READLN(zZ) ;

160 WRITELN(x) ;

170 WRITELN(y);

180 WRITELN(zZ) ;

190 END. (* exread *)

Input: 12 7.1239e3 12.739490 45.5
Output: 12 7123.9 12.73949

Note that the value 45.5 is again ignored by the READLN
statement. If the READLN statement werea READ

statement, however, this value would be retained in an inpuyl}
buffer for the next input statement. The output would beglrl N
where the READ statement left the cursor,

The extra values placed in an input buffer by READ are
retained there for the next input statement. These values s
assigned according to the following rules.

» If the next input statement is another READ statement, thé
variables in this READ statement are assigned values from|
the extra values. If any values still remain unassigned, they
areretained until the next input statement is encountered,

« If the next input statement is a READLN statement, the
variables in the READLN statement are assigned values |
from the extra values. If any values still remain unassigned
they are discarded. ’

Only one string can be read in an input statement because th
characters in a string include every character from the
beginning of the string up to the end-of-line character.
Therefore, the statements

150 READLN(stringl, string2);

and

Chapter 4 —Expressions

LN statement in the previous exam pleis

160 READ(stringl);
\D statement, the input line can be entered | 170 READ(string?2);
own below,
resultin string2 beinga null string.
xread;
EGER; To read the two strings, stri nglandstring2, two READLN
EAL ; statements should be executed as shown below.
v): READLN(stringl):
zy, READLN(string2):
(x); {
(¥): The following program is an illustration of how the READ and i
zy; READLN statements read entered data. Two integers are
tread *) read and then a character isread. Two real values are then
read followed by a string. If the data shown inthe input line is il
7.1239e3 12,739490 45.5 entered, the results (or output) displayed are those shown in)
7123.9 12.73949

the output line.

100 PROGRAM getdata;
110 VAR m,n: INTEGER:

€45.5is againignored by the READLN
{EADLN statement were a READ

er, this value would be retained in an inpuf 120 x,y:REAL;

:input statement. The output would begin | 130 a:CHAR;

tatement left the cursor. i 140 st:STRING;
150 BEGIN

laced in an input buffer by READ are 160 READ{m,n) ;

the next input statement. These values arng 170 READ(a) ;

tto the following rules.

180 READ(x,y) ;

190 READLN(st);

200 WRITELN(m) ;

210 WRITELN(n) ;

220 WRITELN(x) ;

230 WRITELN(y);

240 WRITELN(a);

250 WRITELN(st);

260 END. (* getdata *)

statement is another READ statement, the

‘EADstatement are assigned values from

If any values still remain unassigned, they
the nextinput statement is encountered;

tatement is a READLN statement, the
EADLN statement are assigned values

lues. If any values still remain unassigned,
1.

Input: 12 7A 405 39.4 ‘Thisisatest’
Output: 12 7 40.5 39.4
be read in an input statement because the A 'This is a test’

-ginclude every character from the
ing up to the end-of -line character.
xments

Using Prompts for Input

A program can use an output statement to display a message
that prompts for input. For example, if the y orn key should
be pressed to continue or stop program execution, a program
could include a prompt for the character as shown below,
Note that the wait interpreter option is turned off after the
WRITE statement but before its semicolon. Otherwise, the

gl, string2);

Chapter 4—Expressions

Operators

INTEGER Data
Operators

prorpt would be displayed with the wait option
implemented. Then the ENTER or CLR key would have tobe’
pressed before the computer could accept data.

After the datais read, the wait option must be turned back on
so that the results of the WRITELN can be read in the display.’

100 PROGRAM exprompt;

110 VAR ch:STRING;

120 BEGIN

130 WRITE(¢’ Continue? (y or n)') {$w-};
140 READ(ch) {S$w+}:

150 WRITELN(ch) ;

160 END. (* exprompt *)

L
With each data type, specific operations can be performed by
using a special symbol, called an operator, with the data.
Unary operators process one quantity (called an operand);
binary operators process two operands.
There are three different kinds of operators.
arithmetic operators perform arithmetic processes such &
addition and subtraction on
operands.
relational operators compare two operands.

logical operators perform logical tests on the
true/false values of operands.

The arithmetic, relational, and logical operators that can be |
used with each data type are discussed in the following
sections.

The following operators can be used with INTEGER data.
Arithmetic Operators

There are two unary operators{ + and —}and six binary
operators(+, —, *,/, DIV, and MOD).

Unary operators

+ keeps the sign of the operand following it.

changes the sign of the operand following it.

\E Chapter 4—Expressions

slayed with the wait option
he ENTER or CLR key would have to be
mputer could accept data.

Binary operators

+ computes the sum of the left and right operands.

, the wait option must be turned back on
‘e WRITELN can beread in the display.

- computes the difference between the left and right
operands.

npt:

computes the product of the left and right operands.
i

computes the quotient of the left operand divided by
the right operand. The resultisa REAL value.

winue? (y or n)') {$w-};
bw+},
3

ot *)

DIV computesthe quotient of the left operand divided by r
the right operand and truncates the resuit (drops any
digits to the right of the decimal point). DIV returns an |
integer.

specific operations can be performed by

, called an operator, with the data.]
ess one quantity (called an operand);
esstwo operands.

MOD computes the quotient of the left operand divided by

the right operand and returns only the remainder. MOD
returns an integer.

ent kinds of operators.

Examples of using arithmetic operators with integer data are
shown below,

perform arithmetic processes such as}
addition and subtraction on
operands.

Operation Result Comments

compare two operands. (-3) 3 changessign of the operand

perform logical tests on the
true/false values of operands.

40+7 47

12-7 5

mal, and logical operators that can be
pe are discussed in the following

5%6 30

5/2 2.5 returnsa REAL result
rs can be used with INTEGER data.

25DIV3 8 25/3is 8.333; the integer portion of

8 the quotient is 8

serators (+ and -)and six binary
MV, and MOD).

T

-25DIV3 -8 25/3 is - 8.333; the integer portion
of the quotient is - 8

25MOD 3 1 25/3is 8, with aremainder of 1

the operand following it.

25 MOD 3 -1 -25/3is -8, witha remainderof — 1

of the operand followingit.

TMOD7 0 7/7isl, witharemainderof 0

Chapter 4—Expressions ! Bhapter 4—E

Relational Operators %
Seven relational operators can be used with integer data. A |
relational operator returns a value of TRUE or FALSE, based
on the comparison.

> (greater than) returns a TRUE result if the left
operand is greater than the right
operand. Otherwise, FALSE is
returned.

(greaterthan returnsa TRUE resultif theleft

orequal to) operand is greater than or equal to =
theright operand. Otherwise, 3
FALSE isreturned.

(lessthan) returns a TRUE result if the left
operand is less than the right
operand. Otherwise, FALSE is
returned.

(lessthanor returns a TRUE result if the left

equal to) operand is less than or equal to the i
right operand. Otherwise, FALSE is |
returned.

{equal to) returns a TRUE result if the left and
right operands are equal. Otherwisd
FALSE is returned. i

(not equal to) returns a TRUE result if the left and
right operands are not equal.
Otherwise, FALSE isreturned.

(set returns a TRUE result if the left

membership) operand is an element of the right |
operand. The right operand must b}
a set of values enclosed in brackets,
If the left operand is not a member§
the right operand, FALSE is -'
returned.

Examples of using the seven relational operators are sho
on the next page.

apter 4—Expressions

iy
i
L
£
. {

ators can be used with integer data. A
turns a value of TRUE or FALSE, based

LS

Operation Result

Comments

4>3 TRUE

4>5 FALSE

returns a TRUE result if the left
operand is greater than the right
operand. Otherwise, FALSE is
returned.

i sl i A

4>=4 TRUE

FALSE

4>=5

returns a TRUE result if the left A
operand isgreater than orequalto B
the right operand. Otherwise, :
FALSE is returned.

4<b TRUE

4<3 FALSE

returns a TRUE result if the left 4_< =4 : TRUE

operand is less than the right
operand. Otherwise, FALSE is
returned.

4<=3 FALSE

4=4 TRUE

returns a TRUE result if the left
operand is less than or equal to the |
right operand. Otherwise, FALSE is

returned.

4-5 FALSE -]

4<>5 TRUE 1

returns a TRUE result if the left and 8 4_<>4 FALSE

right operands are equal. Otherwise, ¥

FALSE is returned. 4 IN[4,5,6] TRUE The integer 4 isin the set

shown in brackets.

returns a TRUE result if the left and

right operands are not equal. 41IN[1,2,3] FALSE The integer 4 is not in the set.
Dtherwise, FALSE s returned, 41N[-5..5] TRUE Theinteger4isinthe et of

integers from -5 through 5.

returns a TRUE resuit if the left
operand is an element of the right
operand. The right operand must be
a set of values enclosed in brackets.)
If the left operand is not a member of

Logical Operators
Logical operators cannot be used with INTEGER data.

izfu':ﬁgrpmnd' FALSEls : E:HEAL Data The following operators can be used with REAL data.
- {)perators
; Arithmetic Operators N b
i . There are two unary and four binary operators that can be
seven relational operators are shown : usod with REAL data.

T R e Pl g Y

Chapter 4 —Expressions

Unary operators

+ keeps the sign of the operand following it.
changes the sign of the operand f ollowing it.

Binary operators

+ computes the sum of the left and right operands.

computes the difference between the left and right
operands.

computes the produet of the left and right operands.
computes the quotient of the left operand divided by
the right operand. DIV may not be used with REAL
numbers,

Examples of arithmetic operations are shown below.,

Operation Result Comments

1.2+0.7 1.9

52-5.3 =0.1

5.0%3.1 15.5

2.2/20 1.1 At least one digit must be to the righ
of the decimal point in the number
2.0.

%

5.345/0.5 10.69 At least one digit must be to the lef|
of the decimal point in the number’

0.5. b

Division of INTEGERS resultsina .|
REAL value. H

Relational Operators §
Six relational operators can be used with REAL data. The [f
operator cannot be used with REAL data types. The six |
operators that can be used are shown on the next page.

ter 4—Expressions

anof the operand followingit. greater than

greater than or equal to

sign of the operand following it.

lessthan

e sum of the left and right operands. <= lessthanorequalto

equalto

edifference between the left and right

<> notequalto

e product of the left and right operands.

The following are examples of relational operations on REAL

e quotient of the left operand divided by data

rand, DIV may not be used with REAL

1etic operations are shown below. Operation Results

5.6>6.1 TRUE

it Comments

5.5>=5.5

TRUE

9 5.5<5.1 FALSE
l— 5.5<=5.1 FALSE
s : ﬁ =5.1 FALSE
D ettt lo e sooss eaise

2.0

Logical Operators

39 Atleast one digit must be to the lef|
? N ey ; Logical operators cannot be used with REAL data.

of the decimal point in the number !
0.5.

'Illlncter Data Arithmetic operators cannot be used with character data, but

3 Division of INTEGERS resultsina ' Bijporators the following operators can be used.

REAL value.

Relational Operators
Seven relational operators can be used with CHAR data. The
. comparisons of the operands are performed using the ASCII
" codes of the characters. Refer to appendix G in the CC-40
Pascal Reference Guide for a list of the ASCII codes.

w5
.orscan be used with REAL data. The IN
1sed with REAL data types. The six
e used are shown on the next page.

4

Some examples of using relational operators with CHAR data
are shown on the next page.

55

Chapter 4—Expressions

‘hapter 4—E

STRING Data
Operators

Operation Comments

‘a’<'b’ The ASCII code of a (97) is

The ASClII code of a(97)is

less than the ASCII code of

c .(99).

A The ASCII code of A (65) s
not greater than the ASCIIE

code of d (100).

The ASCII code of A (65)isf
greater than the ASCII codf®

of % (37).

The ASCII code of A (65} is

not equal to the ASCII cods

of G(71).

‘ATC>at The ASCII code of A (65)1s
not equal to the ASCII ¢y
of a(97).

‘a’IN['a','b’,'¢’,'d’] The character a is in the 36
of specified values,

Logical Operators
Logical operators cannot be used with CHAR data.

Arithmetic operators cannot be used with STRING data, bul

the following operators can be used.

Relational Operators

Six relational operators (<, <=, >, >=, =, and <>)can be
used with STRING data to compare the ASCII values of the
charactersin the strings. The ordering of strings is i
alphabetical {lexicographical); uppercase precedes
lowercase. A shorter string precedes a longer stringif the .|
charactersin the shorter string are the same as the characte
in the beginning of the longer string,

Some examples of string comparisons are shown n~ «*
page.

ha pter 4—Expressions

Result Comments

Operation Results Comments

TRUE The ASCII code of a (97} is
less than the ASCH code of

‘Pascal -1V' =‘Pascal -TI' FALSE Strings are not the
same

‘Pascal - IV'<>'Pascal-iv’ TRUE Uppercase and
lowercase lettersdo
not compare eqgual

TRUE The ASClI code of a (97) i
less than the ASCII code of

‘Pascal - IV'<'Pascal-TI' TRUE Lexicographically I
FALSE The ASCIlcodeof A (65)is

comes before T
not greater than the ASCI
code of d (100). ‘Pascal - IV'< = ‘Pascal’ FALSE Alonger string
— 1 compares greater
TRUE The ASClI code of A (65) 18 than a shorter string
greater than the ASCII cod
of % (37). ‘Pascal - 1V'>'Pascal- 4.0 TRUE Letters have a higher

ASCII code than
FALSE The ASCllcodeof A (65)is numbers
not equal to the ASCII codé
of G(71). ‘Pascal - TI'>='Pascal - TI' TRUE Strings are the same

TRUE The ASClI code of A (65) i
not equal to the ASCII codi
of a (87).

Logical Operators
Logical operators cannot be used with STRING data.

TRUE The character a is in the saf
of specified values.

" BOOLEAN Data Arithmetic operators cannot be used with BOOLEAN data,
{iperators but the following operators can be used.

Relational Operators

Seven relational operators(<, <-,> >- - <> and iN)can
be used with BOOLEAN values. FALSE is defined to have the
value 0, whereas TRUE is defined to haveavalueof 1.
Therefore, by definition, FALSE<TRUE.

not be used with CHAR data.

cannot be used with STRING data, but
rscan be used.

<

8
rs(<,<—,>,>—,=,and<>)canbe i
A to compare the ASCII valuesof the '
&s. The ordering of strings is
aphical); uppercase precedes

tring precedes a longer string if the

less than returns a TRUE result if the left
operand is FALSE and right operand
is TRUE. Otherwise, a FALSE value
isreturned.

i <= lessthanor returns a TRUE result if the right
ter string are the same as the characten equai operand is TRUE or if the left
tlonger string. | operand is FALSE. Otherwise, a

FALSE valueisreturned.

1g comparisons are shown ~- +*

57

Chapter 4—Expressions

greater than returns a TRUE result if the left
operand is TRUE and the right
operand is FALSE. Otherwise, a
FALSE value is returned.

greaterthanor returnsa TRUE result if the left

equal operand is TRUE or if the right
operand is FALSE. Otherwise, a
FALSE value is returned.

equal to returns a TRUE result if the left and
right operands are both TRUE or are
both FALSE. Otherwise, a value of |
FALSE is returned.

not equal to returns a TRUE resultif the left and
right operands are not the same.
Otherwise, a value of FALSE is
returned.

member of returns a TRUE resuit if the left
operand isan element of the right
operand (aset). Otherwise, a value | f
of FALSE isreturned. i

Logical Operators
There are three logical operators that can be used with
BOOLEAN data types, AND, OR, and NOT.

AND returns a value of TRUE if the left operand and the

right operand are TRUE, Otherwise, a value of FALSE [B
is returned.

returns a value of TRUE if either the left or right |
operand is TRUE or if both are TRUE. If both operands &
are FALSE, a value of FALSE is returned. B

—y

returns the negation of the operand followingit. A !
value of TRUE is returned if the operand following it is E i
FALSE; a value of FALSE is returned if the operand is } :
TRUE. i |

The results of using the BOQLEAN operators for ail cases are |
givenon the next page.

. '* apter 4—Expressions

returns a TRUE result if the left
operand is TRUE and the right
operand is FALSE. Otherwise, a
FALSE value is returned.

Operation Results

TRUE AND TRUE TRUE

TRUE ANDFALSE FALSE

returns a TRUE result if the left
operand is TRUE orif the right
operand is FALSE. Otherwise, a
FALSE value is returned.

FALSE AND TRUE FALSE

FALSE AND FALSE FALSE

returns a TRUE resuit if the left and |
right operands are both TRUE or are |
both FALSE. Otherwise, a value of
FALSE isreturned.

TRUE ORTRUE TRUE

TRUE OR FALSE TRUE

FALSE ORTRUE TRUE

returns a TRUE result if the left and
right operands are not the same,
Otherwise, a value of FALSE is
returned.

FALSE ORFALSE FALSE

NOTTRUE FALSE

returns a TRUE result if the left
operand is an element of the right
operand (a set). Otherwise, a value
of FALSE is returned.

NOTFALSE TRUE

Examples of using the logical operators with BOOLEAN data
are given below. Note that even though the operands
themselves use relational operators with integer values,
these operands have a BOOLEAN value of TRUE or FALSE.

sperators that can be used with
«ND, OR, and NOT.

Operation Results Comments

TRUE if the left operand and the

TRUE. Otherwise, a value of FALSE =
i (3<4)AND(5>7) FALSE oneof the operands(5>7)is
— not TRUE.
TRUE if either the left or right | -
»rif both are TRUE. If both operands | : 5
e of FALSE isreturned. 4

(3<4)AND(5<7) TRUE both operands are TRUE (3 is
less than 4 and 5 is less than 7).

(3<4)OR(65<T) TRUE at least one of the operands is
TRUE.

(3>4)OR(5>T) FALSE neitheroperand is TRUE.

on of the operand following it. A
eturned if the operand following it is
FALSE is returned if the operand is |

NOT (3<4) FALSE the operand is TRUE and NOT
TRUE isFALSE.

NOT (3>4) TRUE the operand is FALSE and
NOT FALSE is TRUE.

300LEAN operators for all cases are

Chapter 4—Expressions

ter 4—E:

Operator
Precedence

When an expression is evaluated, an ambiguity may arise
when there is a sequence of operators.

For example
temp:=20-4+*3
The instruction could be interpreted as

temp:=20-4+3
'=16 *3
= 48

temp:=20-4+3
(=20~ 12
I= 8

For you to know what results you will always obtain in an
expression, the order in which operations are performed has
been defined in programming languages. In Pascal, the
following order of precedence has been established.

) any calculation within parentheses is
computed first,

NOT is performed next.

*/MODDIVAND areperformed next.

+ - OR are performed next.

=<><=2>=<>IN areperformed iast.

If two operators of the same priority appearin an expression"
they are evaluated in left-to-right order.

In the previous example, the * (multiplication}is always
performed before + (addition). Therefore, temp:=20-4*3 is|
evaluated as shown below. :

20-4*3
20-12
8

apter 4—Expressions

Note that the order of precedence for operations in Pascal
differs from some programming languages. Because the
logical operator AND is performed before any relational
operation, a relational expression on either side of AND must
be enclosed in parentheses.

s evaluated, an ambiguity may arise
:nce of operators.

{5<6) AND(2<3)
1beinterpreted as TRUE AND TRUE which is TRUE.
To subtract the sum of two numbers from another number,

you must use parentheses to override the left-to-right order
of precedence. For example, to subtract thesum of 3% and 7
from 40, the expression must be written as

40-(39+7)
that is evaluated as

40 - 46
it results you will always obtain in an -6
rin which operations are performed has §
ramming languages. In Pascal, the
-ecedence hasbeen established.

If the expression is written as

40-39+7

the expression is evaluated from left to right, 40 - 0+7=

any calculation within parenthesesis
3 1 +7=8, because - and + have the same level of precedence.

computed first.

The following program accepts temperatures in degrees
Fahrenheit and converts them to degrees Celsius. Note that
the expression contains terms in parentheses that are

is performed next.

are performed next. A

operated on first. The division and multiplication are
are performed next. performed from left to right.
are performed last, 100 PROGRAM tcelsius;

110 VAR fahdeg:REAL;

120 BEGIN

130 WRITE('Enter deg: ') {Sw-}:

140 READLN(fahdeg) {$w+}:

150 WRITELN{fahdeg, 'deg F. = ',
(fahdeg-32)*5/9," deg C.")

160 END. {(* icelsius *)

he same priority appear in an expression
n left-to-right order. 1

aple, the * {multiplication)is always
(addition). Therefore, temp:=20-4*3is}

below.
Input: 98.6

Output: 98.6 deg F.= 37.0 deg C.

Chapter 4—Expressions

Forming
Expressions

You can form expressions by combining constants, variables,
and functions {(described in the next section) withany
operators that are valid for the type of constant, variable,

and function you are using. The following conventions apply |

toexpressions.

* An expression can be a single constant or variable, which
may be preceded by a unary plus or minus.

* An expression can be a sequence of variables, constants,
and/or functions separated by operators. The variables,
constants, and functions are called terms of the expression.

» Two operators cannot be adjacent to each other.
Parentheses must be used to separate operators.

For example, to multiply 12bya -7, you must write
12* (-~ 7). In Pascal, 12* — 7 isnot ailowed.

* A function may replace any variable or constant.

In Pascal, all of the constants, variables, and values of I
functions used in an expression must be of the same type. For
example, all variables, constants, and results of functionsin'.
an integer expression must be integers. All variables,]
constants, and results of functionsin a real expression should
be real. Note, however, thatifan integer value is used in a
real expression, it is converted into a real type.

If the variable count is declared to be INTEGER, the
exampies

count + 1 count DIV 5
count + 10 count MOD 4
count* 10

areillustrations of valid integer expressions.

Some invalid integer expressions are shown below.

count + 1.0 aninteger and a real added together produce |
areal result

count/s / is the symbol of division for real data and t
result is a real value

3* -4 two operators together

" Punctions

Bhapter 4—Expressions

iions by combining constants, variables,
bed in the next section) withany i
id for the type of constant, variable,
using. The following conventions apply

"

If the variables average and rate are declared tobe REAL,
the following examples are illustrations of valid real
expressions.

average +5.0

average+ 10 theinteger 10is converted to areal number
average/3.0

average“rate

e & single constant or variable, which i
aunary plus or minus,

Some examples of invalid real expressions are shown below.

¥
e a sequence of variables, constants,]
arated by operators. The variables, |
tions are called terms of the expression, average +-3 twooperatorstogether

; average DIV 5 DIV canbe used only with integer operands

average'.5 no digit before the decimal point

3t be adjacent to each other.
*used to separate operators.

Because of the way numbers are stored internally in the
CC-40, operations performed on real numbers may not yield
anexact value, For example, the fraction 1/3 isrepresented
by afinite number of decimal digits, 0.33333333333333.
After many operations are performed on areal value, the
error due to truncation or to the rounding off of the result can
become large in some cases.

tiply 12 by a — 7, you must write
12* - 7isnot allowed.

1ce any variable or constant,

astants, variables, and values of
kpression must be of the same type. Fo
, constants, and results of functionsin
must be integers. All variables,]
of functions in a real expression shoulg!
r, that if an integer value isusedina
mverted into areal type.

In most cases, the approximation of the result is insignificant.
However, you should not test real values for equality;
instead, test that the difference between two real valuesis
less than a specified amount. For more information on
numerical accuracy, refer to appendix H in the CC—40 Pascal
Reference Guide.

sdeclared to be INTEGER, the

A function is a specialized routine that performs a
computation and returns a value. In Pascal there are both

count DIV 5 standard functions and user-defined functions. User-defined
count MOD 4 functions are discussed later in chapter 7.
The standard functions available in Pascal are represented by
dinteger expressions. a standard identifier usually followed by an operand (called

an argument) enclosed in parentheses.

¢pressions are shown below.

Some functions require that an argument be an expression of
aspecific data type; other functions use arguments that can
be expressions of any data type. Some functions require an
argument be an expression that is ordinal, a category that
includes INTEGER, CHAR, and BOOLEAN types.

Zerand areal added together product |
asult 2]
symbol of division for real data and
sareal value

srators together

In this manual, the data type of an argument is represented as
shown on the next page.

63

Chapter 4—Expressions

integer-expression INTEGER expression
real-expression REAL expression
Lorr-expression INTEGER or REAL expression
string-expression STRING expression
char-expression CHAR expression
bool-expression BOOLEAN expression
multi-expression multiple types of expressions

Functions are used in a program like variables except that a
function name cannot appear on the left side of an

assignment operator(: =). A function is given a value whena §
statement containing the function name is executed. The
value of the function is returned and used in place of the
function name. Note that the argument of a function does na
always have to be the same data type as the value it returns.

Because each value in Pascal has a specified data type, a
function must be used with the same data types as the value |l
returns. In this manual, the functions are grouped by the type
of the value they return.

In Pascal, functions cannot be used alone asimperatives, A
function, however, can appear as part of an imperative
statement, such as a WRITELN statement.

Integer Functions The following standard functions return an INTEGER value:;
they are classified as numeric, memory, string, and ranking
functions.

Numeric
The numeric functions operate on numeric values.

ABS(integer-expression) returns the absolute value of
the integer-expression.

SQR(integer-expression) returns the square of the
integer-expression.

TRUNC(real-expression) returns the mteger portion of 3
the reat -eXPression.

ROUND(real-expression) returns the integer that is
nearest the real-expression. If:
the fractional part of the i

expression is exactly 0.5, the |
result is rounded up if rea,l-

hapter 4—Expressions

expression is positive or down

INTEGER expression
if real-expression is negative.

REAL expression

INTEGER or REAL expression

STRING expression

CHAR expression i The examples below return the INTEGER value shown.

BOOLEAN expression

maultiple types of expressions i oot
Result

Operation Comment

a program like variables except thata

t appear on the left side of an

:=). A function is given a value when g
the function name is executed, The

is returned and used in place of the

ABS(-T7) 7
ABS5(12)

12

that the argument of a function does natf SQR(T) 49 (7*7)
same data type as the value it returns. =
SQR{-4) 16 (-4} (-4)
1Pascal has a specified datatype, a It
1 with thesame data types as the valuejif TRUNC(12.2) 12 TRUNC discards the fractional

/i part.

al, the functions are grouped by the typ
rn. {

TRUNC(-12.3)

annot be used alone as imperatives. A |
an appear as part of an imperative
NRITELN statement.

ROUND(7.2) 7 ROUND rounds to the nearest
integer

ROUND(7.8)

«d functions return an INTEGER value;.
wmeric, memory, string, and ranking l

ROUND(7.49909) 7

ROUND(7.5) 8 ROUND roundsuptothe
nearest integerif the
fractional part is 0.5 and the
number is positive.

s operate on numeric values.

ROUND(-7.5) 8 ROUND rounds down to the
nearest integer if the
fractional part is 0.5 and the
number is negative,

on) returns the absolute value of |
the integer-expression.

on) returns the square of the
integer-expression.

ROUND(-7.499999) -7

on) returns the integer portion of |}
the reai-expression. &

: . . Memory

‘on) returnstheintegerthatis = The memory functions are used for information about
nearest the real-expression. if memory usage,

the fractional part of the b
expression is exactly 0.5, the’
result is rounded up if real- |

Chapter 4—Expressions Pllapter 4—Es

MEMAVAIL
returns the number of unallocated bytes in main |
memory.

SCAN(integer-expression, <> char-expression, multi-
expression)
SCAN(integer-expression, = char-expression, multi
expression)

scans memory comparing each byte with the
character specified by char-expression. If an equil
sign (=) precedes char-expression, the searchis |
made for the first character that is the same as cha
expression. If the unequal symbol {<>) precedes
char-expression, the search is made for the first ;
character that is different from char-expression.
Integer-expression specifies the maximum numbet
of bytes that can be searched. The value returned
the number of bytes searched minus 1. If integer-
expression s negative, a backwards search is madT
and the value returned is the negative of the !
number of bytes searched. If the first byte satisfie
the search, the value returned is 0; if the second |
byte satisfies the search, the value returned is 1, g
so on. If no match or mismatch is found, the value |
returned is integer-expression. The search througl
memory begins at the location specified by multi-
expression. 3

SIZEQF(multi-expression)} ’
returns the number of bytes the variable specified
by multi-expression takes up in memory. Multi-
expression can be an identifier or one of the
predefined data types. |

For example, the number of bytes used for each data type @
be determined by using the SIZEOF function in imperative
shown below.

Imperative

WRITELN(SIZEOF(INTEGER));

WRITELN(SIZEOF(REAL));

ipter 4—Expressions

Imperative Result Displayed

e number of unallocated bytes in main

WRITELN(SIZEOF(CHAR)); 1

ession,<> char-expression, mulli- WRITELN(SIZEOF(STRING)); 81

‘ession, =char-expression, mulli-

WRITELN(SIZEOF(BOOLEAN));

wry comparing each byte with the
specified by char-expression. If an equal
‘ecedes char-expression, the search is
he first character that is the same as chay
1. If the unequal symbol (<>>) precedes
ession, the search is made for the first

The program

100 PROGRAM exscan; i
110 VAR bytes,storage, location: INTEGER; b
|

that is different from char-expression. 120 strl:STRING;

pression specifies the maximum numberf 130 BEGIN

at can be searched. The value returned i 140 bytes:=MEMAVAIL .
' of bytes searched minus 1. If infeger- i i 150 strl1:="CC-40 Pascal is a subset of UCSD i
tis negative, abackwards search is mad¢ff Pascal * : J

lue returned is the negative of the

t ched. If the first byte satisfie 160 storage:=SI1ZEOF(strl);
LRl i A 170 focation:=SCAN(39.='U’ stri[1]);

the value returned is 0; if the second i | ,
jes the search, the value returned is |, apll 180 WRITELN('location = ', locatton);
1rmatch or mismatch is found, the value [190 END. (* exscan *)
i integer-expression. The search throughft
:gins at the location specified by multi-
1. E

displays the following.
location = 28

sssion) §
: number of bytes the variable specified |
rpression takes up in memory. Multi- |
can be an identifier or one of the i
ldata types.

The following information is stored in the variables.

bytes the number of bytes of memory that are

available.

storage thenumberof bytesof memory that str1 usesin
memory.

mber of bytes used for each data type
iing the SIZEOF function in imperatives

location thenumberof bytes(minus 1)that the
interpreter searched until it found a character
equal to (or the same as) the character U. The
search starts at the first characterinstrl and
can continue for up to 39 bytes.

Result Displayed|

NTEGER}) 2

EAL));

In this case, 29 bytes are searched until the
character U is found. Thus the variable
lecationisassigned a value of 28.

Chapter 4—Expressions

You can display the contents of the variables bytes,
storage, and locat i on by using the following WRITELN |
imperatives.

WRITELN(bytes);
WRITELN(storage);
WRITELN(location);

Note: In versions of Pascal written for 16-bit processors,
MEMAVAIL returns the number of unallocated 16-bit words’
in memory. B

String
The string functions are used with strings.

LENGTH(string-expression) ‘
returns the current length of the string specified by
string-expression.

POS(string-expressionl string-expression?)]
returns the position (searching from left to right) i in
string-expression2 where the substring string-
expressionl begins. If string-expressionl cannot be
found within string-expression2, POS returns 0. If |
string-expressionl occurs more than once within ||
string-expression2, POS returns the first
oceurrence.

For example, the program

100 PROGRAM exstr;

110 VAR strl,str2:STRING;

120 position: INTEGER;

130 strlenth: INTEGER;

140 BEGIN
str2:="CC-40 Pascal is a subset of UCSD Pascal’;
strl:="subset of UCSD Pascal’:
position:=POS(strl,str2};
WRITELN('position = ', position):
strienth:=LENGTH(str2)
WRITELN('strienth = ', stirlenth);

210 END. (* exstr *)

68

ipter 4-—Expressions

‘contents of the variables by tes,

tion by using the following WRITELN || |

)i
n;

‘Pascal written for 16-bit processors,
sthe number of unallocated 16-bit word]

i are used with strings.

wession)

:current length of the string specified

ression.,

onl,string-expression?)

:position (searching from left to right) |

“ession2 where the substring siring

bi

1 begins. If string-expression! cannot b

in string-expression2, POSreturns 0. If |
'essionl occurs more than once within *

-ession, POSreturns the first

!

gram

bset of UCSD Pascal’
[

on);

nth);

B

displays the following.

position = 19
strlenth = 39

The variable posi t i on contains the first occurrence of stri
(subset of UCSD Pascal)instr2(CC-40 Pascal is a
subset of UCSD Pascal).The variablestrienth
contains the number of charactersinstr2.

Ranking
The ranking function is used to determine the position of its

expression in its set of values.

ORD{multi-expression)
returns the ordinal value (or the rank}of multi-
expression, which can be any type except REAL or
STRING. The ORD of an INTEGER data type is that
integer value. The ORD of a CHAR data typeis the
character's ASCII code. The ordinal value of FALSE
is 0; the ordinal value of TRUE is 1.

i e T ——

= -

Some examples of using the ORD function are shown below.

Operator Result Comments

ORD{'p") 112 The ASCHcodeof pis 112.

The first value in a set has an
ordinal value of 0.

0

ORD(FALSE}

The ¢rdinal of anintegeris the
integer itself.

ORD(-5)

ORD('E')-1 68 68isthe ORD('D")

ORD(‘M’}+1 78 78isthe ORD{'N")

The following functionsreturn a REAL value.

ABS(real-expression)
returns the absolute value of the real-expression.

69

Chapter 4—Expressions o8 pter 4—F

ATAN(iorr-expression)
returns the measurement of the angle in radians
whose tangent is the integer- or real-expression.

COS(iorr-expression)
returns the cosine of the angle whose measuremeni
inradians is the nteger- or real-expression.

3

EXP(iorr-expressz‘on)
returns the result of e* where x is the integer-or
real-expression.

LN(Zorr-expression) 3
returns the natural logarithm of the integer- or reals
expression. {

LOG(iorr-expression)
returns the common logarithm of the integer-or

real-expression. |
” S—

PWROFTEN(tnteger-expression) |]
returns 10 raised to the power specified by the
integer-expression, which must be f rom 0 through i

— 3 Function

SIN(iorr-expression) i :
returns the sine of the angle whose measurement in |

radians is the integer- or real-expression.
SQR(reai-expression)

returns the square of the real-expression.
SQRT(torr-expression)

returns the square root of the tnteger- or real

expression.

f

Some examples of these real unctions are shown below,

Function Result Comments

ABS(-4.5) 4.5 ABS alwaysreturnsa
positive value or zero

ATAN(4.5) 1.352127381 returns angle measured.
inradians]

nter 4—Expressions

)
easurement of the angle in radiang
tis the integer- or real-expression.

Function Result Comments

CO0S(4.5) -0.2107957994 returnscosineof 4.5
radians

sine of the angle whose measuremen|
e integer- or real-expression.

EXP{4.5) 90.0171313 e*is90.0171313

it of & where x isthe integer- or

LN(4.5) 1.504077397

LOG(4.5) 0.6532125138

PWROFTEN(4) 10000.0 10%is 10000.0

‘ural logarithm of the integer- or real-ff

SIN(4.5) -0.9775301177 returns sine of 4.5
radians

SQR(4.5) 20.25 4.5%is20.25

mon logarithm of the integer- or
7.

wession) SQRT(4.5) 2.121320344 EXE -i :
d to the power specified by the -

Zon, which must be from O thro
' ugh E(‘haracter The following function returns a character,
 Function

g
i

CHR(integer-expression)
returns the character that corresponds to the
\ ASCII code of integer-expression.

of the angle whose measurement in §
teger- or reqal-expression.

reof the real-expression.

Some examples of using the CHR function are shown below.

reroot of the integer- or real- Operation Result
T

e _!: I'g'
:al functions are shown below.

CHR(38) &

Comments CHR(58)
ABSalwaysreturnsa CHR(62)
positive value or zero - ')
- CHR(90)
381 returns angle measured ||
in radians CHR(98) 2

Chapter 4—Expressions

hapter 4—Exp1

String Functions

The following functions return a string.

CONCAT(string-expressionl, string-expression®, string
expressionsd, ... string-expressionn)

returns the string that is all the string expressions
(string-expressionl, string-expression2, ... string-|
expressionn) concatenated or linked together, If t
string returned by CONCAT is assigned to a string
variable whose declared (or default) length is less
than the concatenated string, the message
Truncation warningisdisplayed. The string
assigned to the string variable has a length the same
asthe declared {or default) length of the variable.

COPY(string-expression,integer-expressionl, i nteger
expression?)
returns a substring of a string expression. The
substring includes the characters in string
expression starting at the position specified by
integer-expressionl and continuing for integer-
expression? characters. If the length specified by

integer-expression2istoo long, the COPY function B

is not performed.

The program

100 PROGRAM excopy;

110 VAR exl,ex2,ex3:STRING:

120 stringex,substrin:STRING:

130 BEGIN
exl:='C’;
ex2:='C-40 Pascal is a subset of ':
ex3:="UCSD Pascal’;
stringex:=CONCAT {exl,ex2,ex3);
substrin:=COPY(stringex,19,21):
WRITELN(stringex);
WRITELN(substrin):

210 END. {* excopy *)

concatenates the strings ex1, ex2, ex3 and coptes 21 of the |
characters in the concatenated string starting at position 19. ||
The following output is produced. 1

CC-40 Pascal is a subset of UCSD Pascal
subset of UCSD Pascal

litlean Functions

Hilt1-Type

lictions

Apter 4—Expressions

ti .
llonsreturn astring, ¢lean Functions The following functions return a BOOLEAN value of TRUE or

FALSE.

B

oressionl, string- esst ing- |
nytmrel-lmon:)g expression?, string 3
28 ring that isall the string expressions
wessionl, stﬁng~express:%n£? . .ssstn:;::&
-n)concatenated or linked together. If
tned by CONCAT is assigned to a string |
10se declared (or default)length is less \
ncatenated string, the message :
n wa rn ing isdisplayed, The string |
the string variable hasa length the sameg®
.Eegr default) length of the variable. | § .

ODD(integer-expression)
returns a TRUE when the integer expression is odd
or a FALSE when the integer expression is even.

returns a value of TRUE or FALSE regarding the
end-of-file marker.

returns a value of TRUE or FALSE regarding the
end-of-line marker.

on,integer-expression] , tnteger-

bstring of a string expression. The
cludgs the characters jn string-
:tart}ng at the position specified by
“esstonl and continuing for integer-
characters. If the length specified by

'ession2istoolong, th i
med. g, the COPY function

The EOF and EOLN functions are described later in *‘File.
Handiing. "

ltl-Type The following functions can have expressions that are o
Jigtions INTEGER, CHAR, or BOOLEAN; the data type of the value

returned is dependent on the data type of the expression. A
REAL or STRING data expression cannot be used.

PRED{multi-expression)
{predecessor function) returns the value that
precedes the value specified by multi-expression.

Y
x3:STRING:;
substrin:STRlNG;

SUCC(multi-expression)
(successor function) returns the value that succeeds
the value specified by multi-expression.

*ascal s a subset of ':
’ascal’; ’
INCAT (exl,ex2, ex3) :
IPY(stringex,19.21):
ngex) ;

Forexample,

PRED(‘B")is A
SUCC('E")isF

triny; PRED(5)is 4
) SUCC(5)is 6
PRED(TRUE)is FALSE

sexl, ex2,_ex3 and copies 2] of the ||
enated stringstarting at position 19, |
produced. .

If the expression of the PRED function has no preceding
value, an error occurs when the function is executed.
Likewise, if the expression of the SUCC function has no
successor value, an error occurs when the functionis
executed.

;ullnset of UCSD Pascal
:a

Chapter 4—FExpressions

upter 4—Exp

DataType
Formats

Unformatted Data

as a user-defined type tha
types.

Forexample, the identifier grade can be declared a user-
defined type that is the predefined CHAR type, Asshown
below, variables can then be declared ina VAR declaration
be that user-defined type.

Declaring an identifier asa REAL type is shown below.

130 TYPE angle=REAL -
140 VAR degree:angle;
150 radian:angle;
160 grad:angle;

You can also declare that the type of anidentifier istobe a
user-defined type. In the example below, the identifier
measure is defined to be of the user-defined typeangle.

130 TYPE angle=REAL:

140 measure=angle:
150 VAR degree:angle;
160 radian:angie:
170 grad:measure:

Note that a TYPE declaration does not allocate memory for
the identifierit is defining to be used as a variable. The VAR
declaration must be used to allocate space for variables.

In Pascal you can display data unformatted or You can spec
the format for the data. The next sections discuss
unformatted and formatted data.

In CC-40 Pascal, no leading or trailing spaces are displayed |
with any unformatted item. An item that isa CHAR data typg
isdisplayed in one column, A STRING itemis displayed in thﬁ
number of columns required for the current length of the

string.

AREALdataitemis displayed in decimal notation if its valu
has 10 or less digits to the left of the decimal point. If the

inpter 4—Expressions

ation canbe used to declare variables that |
fined data types (INTEGER, REAL, STRIN(
LEAN). When you declare in a program mg
same type, it is often easier to remember |
sused for if it is defined with an informatis
entifier can be declared ina TYPE statema®
[type that isone of the predefined data

ignifi igits, the valueis
value has more than ten significant dlgns, v)
rounded, In Pascal, an item displayed in decnmal_notathn
always has at least one digit to the left of thg decuqal point
and at least one digit to the right of the decimal point.

i i 999.49995 or
REAL dataitem has a magnitude o_f 999999!? :
;fr:ater, the item is displayed in scientific notation in the form
shown below.

Identifier grade can be declared a user-
tisthe predefined CHAR type. Asshown

can then be declared ina VAR declaration
ed type,

mantissaEexponent

Anitem is displayed in scientific notation according to the
following conventions.

tifierasa REAL type is shown below. » The mantissa is displayed with 7 or fewer digits with one

digit to the left of the decimal point and at least one digit to

*=REAL ; the right of the decimal point. I
rrangle; ‘ ' . r
I ang le; * Trailing zeros are omitted in the fractional part of the =_
ingle;

mantissa.

rethat the type of an identifier istobea
In the example below, the identifier
1tobe of the user-defined type angle,

* The exponent is displayed with a plus or minus sign followed
by a two- or three-digit exponent.

« When the exponent has two digits, the mantissa is limited to

igits; hree digits, the
® : seven digits; when the exponent hast.
r':E_Aa"-"rg le; mantissa is limited to six digits. then necessary, ;I&g ts
rangle; ' ! mantissa is rounded to the appropriate number of digits.
rangle;
:asure;

789 and
For example, the values 123456789012.3456
0(;8000(;:)9876543210 are displayed as shown below.

-
eclaration does not allocate memory for |
*fining to be used as a variable. The VAR
*used toallocate space for variables,

Ly Value Scientific Notation
H

splay data unformatied or You can speclf] |
ata. The next sections discuss

rmatted data.

123456789012.3456789 1.234568E_! +11

-0.0000009876543210 -9.876643E - 07

leading or trailing spaces are displayed I
editem. An item thatisa CHARdataty .
Jlumn. A STRING item is displayed in thil A

‘equired for the current length of the

The statements

210 address:='2301 Ash #39';

220 count:=135;

230 grade:='a";

240 result:=3940.7125:

250 WRITELN(address,count,grade,result);

displayed in decimal hotation if its valyp
ythe left of the decimal point. If the

Chapter 4—Expressions Bl ha pter 4—Expi

produce the following output.

2301 Ash #39135a3940.7125

Formatted Data You can design the format of the output data by including a
width specification next to each data item in an output
statement. The width specification is the number of columns
that are to be used to display the item. Anitem is formatted
whenit is followed by a colon and an integer expression that
specifies the field width. If an item requires fewer columns
than are specified, the item is displayed right-justified with
leading blanks.

i
Htatement

If the WRITELN statement in the above example is changed |
to

) WRITELN(3940."

250 WRITELN(address:13,count:6,grade:2,result:
10} ;

110 WRITELN(3940.

LS

the output that is produced is

2301 Ash #39 135 a 3940.7125 _MOWRITELN(SMO.‘.

.
W0 WRITELN(3940.

i

If an item requires more columns than are specified, the 1tel|
is displayed in the number of columns necessary. ¥

For example, the output statement ?

L) WRITELN(3940

260 WRITELN(address: 10, count:2,grade:2, result!
4);

-

WA} WRITELN(3940. 7

produces the following output.

;
Ly
i
§
;
2301 Ash #39135 a3940.7125 &

Because the field-width specifications for address, count,;?‘.
) WRITELN(- 394C

and result are too small, the items are displayed in the
number of columns necessary to display their values.

1) WRITELN(-3940

colon and an integer-expression after the field-width
specification. The value is then rounded to the specified |
number of decimal digits and displayed. For example, the ||
statement

270 WRITELN(address:13,count:6,grade:2, result ||
10:2) :

goutput. produces the output

3940.7125 2301 Ash #39 135 a 3940.71

For INTEGER and REAL data, the field-width specification
must allow a column for a negative sign. In addition, for
REAL data the field-width specification must allow a column
for the decimal point.

rmat of the output data by including a
ext toeach data item in an output
specification is the number of columnj|
display theitem. Anitem is formatted |
"acolon and an integer expression that
th. If an item requires fewer columns |
zitem is displayed right-justified with

The output displayed from various WRITELN statementsis
shown below,

ment in the above example is changed | Display Comments |

3940.7125 unformatted item

ss:13,count:6,grade: 2, result!)
i 3940.7125 unformatted because field-
width is too small

luced is

3940.7125 unformatted because field-

width is too small

35 a 3940.7125

re columns than are specified, the ite i ;
ber of columns necessary. 3940.71 displayed right-justified in 10
columns and rounded to 2

decimal places

utstatement

3940.713 displayed right-justified in 10
columns and rounded to 3
decimal places

ss:10,count:2,grade:2.result: |

joutput. i

3940.7125 displayed right-justified in 10
columns and rounded to 4
decimal places

3940.7125

all, the items are displayedinthe || I_WRlTELN{ 3940,7125:4); -3940.7125 unformatted because field
*essary to display their values. E width is too small

you can also specify the number of | [l WRITELN(- 3940.7125:10:3): -3940 713 displayed right-justified in 10
fter the decimal point by including a S columns with 3 decimal places
tpression after the field-width : —
eis then rounded to the specified
tsand displayed. For example, the

s:13.count:6,grade:2, result]

Chapter 4—Expressions

Positioning the
Cursor

The maximum field-width specifications for CC-40 Pascal iy
shown in the table below.

Data Type Maximum Field-Width Specification

INTEGER 80

REAL 14

CHAR H

STRING 80

Note: You can display astring with alength greater than 80
by using no format specification. The stringis displayed 80
characters at atime. The ENTER key can be pressed to
display the next 80 characters in the string until the end of
the string is reached.

You can position the cursor anywhere in the display by using

the GOTOXY statement. The general form of the GOTOXY
statement is

GOTOXY (col,row);

where col isan integer expression that indicates a column af

row is an integer expression that indicates a row. The upper

left corner is assumed to be (0,0). For the CC-40, the column
specification must be in the range 0-30 and the row
specification must always be 0.

lhapter 4—Expr

B Elvlew
§ Chapter 4

If an invalid column or row specification is specified, zerois §

used for that specification and the warning Imp lementat ¢
restrictionisdisplayed. If the other specification is vali

GOTOXY usesit. If both the column and row specifications |
are out of bounds, two warnings are displayed and the curs
is placed at(0,0). :

Any subsequent input/output begins at the location specifig
by the GOTOXY statement. For example, the following
program

100 PROGRAM cursor;

110 VAR code: INTEGER;

120 BEGIN

130 WRITE('Enter code (1-5): ') {[$w-}:
140 GOTOXY(19,0),

Mhapter 4—Expressions

t field-width s
* table below.

Pecifications for CC-40 Pascal B

——

150 READLN(code) {Sw+};
160 GOTOXY (30, 0y,

170 WRITELN(code) ;

180 END. (* cursor "

Maximum Field-Wideh Specification

= e

8 prompts for a code to be entered, which is then read at {8
80 | column 19 and displayed in column 30, il
14 I 8
+E T T Heview 1. Ifyouareusinga VAR, aCONST, and a TYPE declaration, i
i} ! ; .'hapter 4 write the declarations in the order in which they must
. :
80

appearina Pascal program.

display a string with a length
mat specification. The strin
time. The ENTER key can
t 80 characters
ched.

Breater than 8()
g is displayed 80
be pressed to
nthe string until the end of

2. From the constant declarations
for the variables being assigned

CONST

nthe cursor an

below, what are the types

Ywhereinthe display by using
eneral form of the GOTOXY |

iteger expression that indicates a column anf

: I
€Xpression that indicates a row, The upper ¢c="hellg': .
imed to be (0,0), For the CC-40, the column i
st be in the range 0-30 and the row i &

i w7
it always be 0. ;

NN or row specificatio,
ification and the War

e=FALSE:
1 is specified, zero ia

|
!
ning lmp lementat jg 3. Whichof the following are not valid REAL valuesina I
isplayed. If the other specification is valid, § Pascal program and why are they not valid? 5
fboth the column androw specifications | i [}
two warnings are displayed and the cursai‘ 7.567 E01

5
Put/output begins at the location specifj

itement, For €xample, the foltowing

4.5

'S0r;
ITEGER;

12.

35.7654
ter code (1-5)- ") {Sw-} .

1 v

+3.94567e - 04

Chapter 4 —Expressions Plhapter 4—FE)

4. Afterthe followingstatements are executed, what are
the valuesof a and b?

0;

a

b

Given the following variable declarations

VAR a: INTEGER;
b:REAL:
¢ :CHAR;
d:STRING;

when the statement READ(a, b, ¢, d) ; is executed and
the following data input, what are the values of a, b, ¢,
and d?

1234 35.5, the

a

b .z

c

d

What is the output from each of the following
statements?

WRITELN(B3.545:4) ;

WRITELN(83.545:5:1);

WRITELN(83.545:7:2);

WRITELN(83.545:8:4); _

WRITELN(-83.545:7:4);

WRITELN(-83.545:5) ;

§ Chapter 4—Expressions

WRITELN(-83.545:2:0);

statements are executed, what are
b? '

WRITELN(83.545:2);

7. Whatisthe type and the result of each of the following
expressions?

Example Result Type

345

5/2

:variable declarations

11BIV2

5.6<5.8

3*5.5

.READ(a,b,c¢,d); isexecuted and
1put, what are the valuesof a, b, ¢, |

31IN[O..5]

11M0D2

35.5, the el

‘hello’<* HELLO'

Write a program that reads a string, displays the length of
the string, scans the string for the letter z, and displays (¥
the result of the scan.

Write a program that reads two strings and uses the POS
function to determine if one of the strings is a substring of

the other string and then displays the results of the POS

function. E

rom each of the following

N 10. Write a program that reads an integer and a character and
) displays the predecessor and the successor of each.
11. Write a program that accepts a temperature in degrees ;]
12): Celsius, converts it to degrees Fahrenheit, and displays id
the result. To convert degrees Celsius to degrees i\
14); Fahrenheit, multiply the Celsius temperature by 9/5 and I
add 32. &
7:4); i
1 1
3

5);

Chapter 5—Flow of Control ~ PUhapter 5—Flow

Introduction The statements in a program are normally executed
sequentially from the first statement to the last. Executing
each statement in the order that it appears on the program
listing is known as sequential execution. You can change thg
order in which the statements are executed by using control |
statements. ,

In Pascal, there are three classes of control statements.

« Repetition Statements
¢ Conditional Branch Statements
¢ Unconditional Branch Statements

Repetition Repetition statements are used when a section of a program

Statements to be repeated a number of times. The program lines that ar¢
repeated are known as a loop. By using repetition statemenl
you can avoid duplicating lines.

For example, suppose you want to input three numbers fron
the keyboard and then display their sum. A program that uagg
sequential execution to input three numbers and print their
sum is shown below. 1

100 PROGRAM add3; (*program to add 3 numbers*)
110 VAR next,sum: INTEGER;

120 BEGIN |
130 sum:=0;

140 WRITE('Enter #: ')} {$w-};

150 READLN(next),

160 sum:=sum+next ;

170 WRITE('Enter #: ');

180 READLN(next) ;

190 sum:=sum+next ;

200 WRITE('Enter #: ');

210 READLN(next) ;

220 sum:=sum+next {$w+};

230 WRITELN('Sum is ',sum};

240 END. (* add3 *)

If the program is supplied the three numbers
36

7

19

the program's final output is

Sum is 62

ter 5—Flow of Control

By using a repetition statement you can eliminate some
program lines. There are three kinds of repetition statements:
the FOR statement, the REPEAT statement, and the WHILE

statement.

ram are normally executed

st statement to the last. Executing
lerthat it appears on the program

atial execution. You can changet
1ents are executed by using control

The FOR statement repeats a portion of a program a specific
number of times. The FOR statement uses a counter that is
incremented by one each time the loop is performed. This
counter is also called a control variable. You must supply the
starting value and the ending value of the counter.

classes of control statements.

tements

tatements The general form of the FOR statement is shown below.

e used when a section of a program b | FOR counter:=start TO stop DO statement

sf times. The program lines that ar¢ |
loop. By using repetition statementyf
1lines.

The previous program can be written with a FOR statement as
shown below.

100 PROGRAM add3; (*program to add 3 numbers®)
110 VAR next,sum,count: INTEGER;

120 BEGIN

130 sum:=0; {$w-}

140 FOR count:=1 TO 3 DO

J want to input three numbers from |
splay their sum. A program that usea
1put three numbers and print their

' "l 150 BEGIN
’Eégg;ram to add 3 numbers®)| 160 WRITE('Enter #: ')
170 READLN{next);
180 sum: =sum-next
1:07) {Sw-}: % 190 END; (* count *) i
) 200 [Sw+} Fd
i3 210 WRITELN{'Sum is ‘', sum} i
1 0); i | 220 END. (* add3 *)
H
‘ When a FOR statement is first executed, the counteris
TR Y k assigned the value of the starting value. In this program, the
counter is the identifier count, which hasbeen defined asan
{Sw+}; INTEGER variable. Count begins with a valueof 1.
s ',sum};

The FOR statement instructs the computer to perform the
next statement after the word DO as many times as the
counter specifies. If one statement follows the reserved word
DO, only that statement is executed in the loop. If the
reserved word BEGIN follows the reserved word DO, all of
the statements between this BEGIN and its matching END are
treated as a single compound statement and are executed in

the loop.

the three numbers

Chapter 5—Flow of Control apter 5—F1

Note there is no semicolon after the reserved word DOina §
FOR statement. The FOR statement performs the statement §
after the reserved word DO. A semicolon before an END i
statement is optional; a semicolon after the END statement i
the loop is required to separate it from the next statement. §

Ina FOR statement, the loop is executed and the counter is
incremented by one. The loop is executed repeatedly until
the value of the counter is greater than the ending value. In
the preceding example, the loop is performed three times
before the computer executes the next statement.

The control variable of a FOR statement can also be
decremented by one using the reserved word DOWNTO
instead of TO.

The general format for using DOWNTO in a FOR statement s

FOR counter :=start DOWNTO stop DO staiement

The program

100 PROGRAM exdownto:

110 VAR count : INTEGER:

120 BEGIN

130 FOR count:=3 DOWNTO 1 DO
140 WRITE{(count,' ');

150 END. (* exdownto *)

displays the values of the counter.
321

In Pascal, the countercan be an INTEGER, CHAR, or
BOOLEAN variable. For example, the program

100 PROGRAM countval; 1

110 VAR count:CHAR; ¥
120 BEGIN 1
130 FOR count:="A'TO'G" DO | A
140 WRITELN(count,' Fabrics :'); i

150 END. (* countval *) .

displays the following output.

A Fabrics
B Fabrics
C Fabrics

3 bhapter 5—Flow of Control

Jlon after the reserved word DOina| D Fabrics :
)R statement performs the statement E Fabrics
F Fabrics

d DO. A semicolon before an END
1semicolon after the END statement§
separate it from the next statement.

G Fabrics

The starting and stopping values can also be variables or |8
expressions. In the program below, the computer prompts for b
the starting and stopping values to be entered from the
keyboard. The starting and stopping values are evaluated
when the FOR statement is first executed.

eloop is executed and the counteris §
he loop is executed repeatedly until
ar is greater than the ending value. Inf
:, the loop is performed three times
xecutes the next statement.

100 PROGRAM forvalue;
110 VAR startval,stopval,count: INTEGER;

’a FOR statement can also be

sing the reserved word DOWNTO 120 BEGIN
130 WRITE('enter starting integer: ')
{$w-}.

140 READLN({startval);

150 WRITE(enter stopping integer: '),

160 READLN(stopval) {$w+};

170 FOR count:=startval TO stopvat DO

180 WRITELN{count,' squared is ',
SQR{count});

190 END. (* forvalue *)

‘using DOWNTO in a FOR statement k.

JONNTO stop DO statement

nto; 1
o | If -1 isentered as the starting integer and 3 is entered asthe

3 DOWNTO 1 DO B stopping integer, the program produces the following output.

s L} L] } ' T

nte *) -1 squaredisl

the counter. OsquaredisO

1squaredisl

2squaredisd

canbe an INTEGER, CHAR, or
or example, the program

3squared is9

val; }
R: The following conventions apply to a FOR statement. f
SA'TO'G' DO « The value of the control variable can be used for g
.ount,’ Fabrics :'); computations within the compound statement, but the i
val *) value of the control variable cannot be modified. i 8
biS

output. » The starting value and the stopping value for the control E

variable cannot be changed within the compound

statement. The control variable, the starting value, and the

stopping value must be of the same type (usually INTEGER,

but may be any predefined type except REAL or STRING). 4

85

Chapter 5—Flow of Control " | Chapter 5—Flo

The REPEAT
Statement

« [f TO is used and the starting value is greater than the
stopping value, the FOR statement is not executed. If
DOWNTO is used and the stopping value is greater thanthe
starting value, the FOR statement is not executed.

« If the starting value equals the stopping value, the
statement is executed once.

« The control variable must be a local variable; it cannot bea
VAR parameter (described later in chapter 7).

» After a FOR statement has executed, the value of its contro| §
variable is undefined. i

Another statement that can be used in Pascal to form a loop 4 § i
the REPEAT statement. The general format of a REPEAT
statement is shown betow.

REPEAT statement UNTIL Boolean-expression '-'.tl_le WHILE
1

Hintement
The REPEAT statement performs all the statements
following the reserved word REPEAT down to the reserved
word UNTIL and then tests the Boolean-expression after the
word UNTIL. If the Boolean-expressionis FALSE, the
statements between REPEAT and UNTIL are performed
again and the expression is tested again. This processis
repeated as long as the Boolean-expression is FALSE. When
the expression becomes TRUE, the loop is no longer
performed and the statement following it is executed.

A REPEAT loopis always executed at least once because the
Boolean-expression is tested after the loop has been :
executed.

Suppose you are loading boxesinavanthatcanholdupto '
1900 pounds. The following program can be used to add the |
box weights one at a time until the total weight exceeds 1904
pounds.

100 PROGRAM maxweigh;

110 CONST maximum=1900.0;
120 VAR count: INTEGER;

130 weight, totalwt REAL;
140 BEGIN

150 totalwt:=0.0;

160 count:=0; {%w-}

§ ilapter 5—Flow of Control

rting value is greater than the
Istatement is not executed. If

ve stopping value is greater than the
statement is not executed.

1als the stopping value, the
nce.

1st be a local variable; it cannot be a 3
bed later in chapter 7).

has executed, the value of its control |
-an be used in Pascal to form a loopj '

The general format of a REPEAT
N

IL Boolean-expression

performs all the statements

‘ord REPEAT down to the reserved
sts the Boolean-expression after the
wn-expression is FALSE, the

YEAT and UNTIL are performed

is tested again. This process is
oolean-expression is FALSE. When
T'RUE, the loop is no longer
ment following it is executed.

‘g executed at least once because the. .
sted after the loop has been R 1

boxesina van that can hold up to

ing program can be used to add the | |

s until the total weight exceeds 1900 §
el

h;

900.0;
IER;

ilwt :REAL ;

~}

‘I'he WHILE
 N{atement

170 REPEAT

180 WRITE('Enter box weights:');
190 READLN(weight) .

200 totalwt:=totalwt+weight;

210 count :=count+l;

220 UNTIL totalwt>maximum; {S$w+}

230 WRITELN(' Last box exceeded max.'}:

240 WRITELN(count,' boxes have exceeded',
maximum:10:1,".")

250 END. (* maxweigh *)

The REPEAT loop executes the statements from RE PEATto
UNTIL until the total weight of the boxes is greater than the
maximum allowed.

Note that you can enclose the statementsina REPEAT-loop
with BEGIN and END, but they are unnecessary.

Another form of loop statement is the WHILE statement. The
general form of a WHILE statement is shown below.

WHILE Boolean-expression DO statement

A WHILE statement tests the Boolean-expression after the
word WHILE, If the Boolean-expressionisTRUE, the
statement after the word DO is performed and the Boolean-
expression is tested again. This process is repeated as long as
the expression is TRUE. Whenthe Boolean-expressionis
FALSE, the loop is not performed and the statement afterthe
WHILE loop is executed.

If multiple statements are to be executed in the loop, they
must be bracketed together into a single compound statement
by the words BEGIN and END. The Boolean-expression used
to control the loop is written before the loop, and thus thereis
no natural terminator for the loop (as there isin the REPEAT

statement).

The previous example could be written usinga WHILE

statement as shown below. The difference between thetwo
programs is that WHILE teststhe Boolean-expression before
the loop is executed. If the condition is FALSE to begin with,
the loop is not executed. Ina REPEAT statement, the loopis
executed before the Boolean-expression is tested.

e

==

Chapter 5—Flow of Control | .apter 5—Flo

100 PROGRAM maxweigh;
110 CONST max imum=1900.0;
120 VAR count: INTEGER;
130 weight, totalwt:REAL;
140 BEGIN
150 totalwt:=0.0:
160 count :=0; {%w-}
170 WHILE totalwt=maximum DO
180 BEGIN
WRITE('Enter box weights:’);
READLN(weight);
totalwt:=totalwit+weight;
count :=count+l;
END: {Sw+}
240 WRITELN('Last box exceeded max.');
250 WRITELN(count,' boxes within ',
maximum:10:1,"' max.')
260 END. (* maxweigh *)

The Boolean-expressionin a WHILE statement is the inverse
of the one in a REPEAT statement. The WHILE loop is
performed so long as the weight is less than or equal to the
maximum; the REPEAT loop is performed until the weight I
greater than the maximum.

The following table summarizes the differences between the.
REPEAT and WHILE statements. E

REPEAT WHILE

The loop statement is
performed at least once.

be performed at all.

The loop is repeated only The loop is repeated only

while the Boolean-
expression is FALSE.

while the Boolean-
expression isTRUE.

The reserved words REPEAT
and UNTIL bracket the loop
statements into a single
compound statement.

The reserved words BEGIN, |
and END are used i
to bracket multiple loop
statements into a single
compound statement.

ter 5—Flow of Control

gh; In Pascal, you can have a loop appearing as part of a
=1900.0; : statement within another loop. A loop embedded (or inside)
GER; . another loop is called a nested loop. Any number of loops may
talwt:REAL: i be embedded within a loop until a program uses all of the i

available memory.

);
Sw-}
rt=max imum DO

The following program displays a multiplication table for

integers from one through nine. The first FOR-loop control
variable is used as the INTEGER value for each of the rows,
The second FOR-loop is embedded or nested inside the first

inter box weights:');

veight); FOR-loop and its control-variable is used as the INTEGER
=totalwt+weight; value for each of the columns. Thus, the outer FOR-loop
ount+1; control-variable specifies a row value that is multiplied by the

inner FOR-loop control-variable, which specifies each
successive column value. The nine products for each row are
displayed.

t box exceeded max.');
t,' boxes within ',

,omax. ')
gh *)

1060 PROGRAM table;

110 VAR countl,count2: INTEGER;

120 BEGIN

130 WRITELN(® Multiplication table: 1-9'):
140 FOR countl:=1 TO 9 DO

tin a WHILE statement is the inversg
statement. The WHILE loop is
2 weight is less than or equal to the

*loop is performed until the weight |g | 150 BEGIN {$w-}
um. B 160 FOR count2:=1 TO 9 DO
¥ 170 WRITE(countl*count2:3);
marizes the differences between the 180 WRITELN {$w+};
190 END:;

itements. E

200 END. (* table *) i

WHILE The following program uses a FOR, a REPEAT, and a WHILE
loop to compute the windchill factor for a given temperature.

The following variables are assigned values from the

The loop statement may nol ;

be performed at all. keyboard.

Y The loop isrepeated only nooftemp the number of temperaturesto be entered (1-5)
while the Boolean
expression is TRUE. velocl the starting value of the velocity of the wind

'EAT Thereserved words BEGIN|

J0p and END are used
to bracket muitiple loop
statementsinto a single
compound statement.

velog? the ending value of the velocity of the wind

wincremt the wind velocity increment

tempture thetemperature in degrees Fahrenheit

The program calculates and displays the windchill factor for
the given temperature from the starting wind velocity to the
ending wind velocity using the specified increment. The
program is performed until the number of temperatures
specified has been entered.

Chapter 5—Flow of Control

pter 5—Floy

100

Ao

wcf’

PROGRAM windchi | ;
110 VAR nooftemp.wincremt:lNTEGER;
120 tempture.veiocl.velocZ.tempveI:INTEGER,
130 count : INTEGER:
140 wcfactor:REAL ;
150 BEGIN {$w-}
160 REPEAT
170 WRITE('# of temperatures (1-5): 'y
180 READLN(nooftemp);
190 UNTIL nooftemp IN[1..5];
200 WRITE(' from ? mph of wind: 'y.
210 READLN(veIocl);
220 WRITE('to ? mph of wind- 'Yy,
230 READLN(veloc2):
240 WRITE('Enter wind increment: 'y
250 READLN(W|ncremt);
260 FOR count:=1 To nooftemp DO
270 BEGIN
280 tempvel :=veiocl;
290 WRITE(' deg fahrenheit: "y,
300 READLN (tempture) : {$w+}
310 WHILE tempvel<=veloc2 DO
320 BEGIN
330 wcfactor:=91.4—(0.288‘SQRT(tempvei)+ .45
340 0.019‘tempvel)*(91.4-tanpture):
350 WRITELN(tempture,CHR(223).tempver:s, mph=
360 wcfactor:S:O,CHR(Zza));
370 tempvel:=tempvel+wincremt;
380 END; (* tempvel<=veloc2 =)
390 {$w-)
400 END: (* count i

410 END.

{* windchil ")

When a Boolean expression is constructed, be sure that the |

test isa valid one. For example, in the followin
print the positive even integers less than 11,¢
stops because the control variable never has a value of 1k

100 PROGRAM evensum;
110 VAR count: INTEGER;
120 BEGIN

130 count:=2;

140 WHILE count<>11 DO (*
150 BEG IN

160 WRITE(count):

infinite loop *)

g program to |
he loop never |

The IF Statement

hapter 5—Flow of Control

170 count :=count+2;
180 END (* while count <>11 *)
190 END. (* evensum *)

2| : INTEGER;

Conditional branch statements are used to test Boolean-
expressions and, depending on the results of the test, to
execute a specific part of a program. Pascal providestwo
kinds of conditional branch statements: the IF statement for
binary choices, and the CASE statement for multiple choices.

3): '):

The IF statement is used when you have to decide between
two options. The IF statement can take two forms.

IF Boolean-expression THEN statement

or

IF Boolean-expression THEN statement ELSE statement

In the first form, if the Boolean-expression is TRUE, the
statement that follows the reserved word THEN is executed,
If Boolean-expression is not TRUE, the statement following

THEN isignored and the next statement is executed.

T(tempvel)+ 0.45- {F age>18 THEN WRITELN{'eligibie for prize');
ture);

.tempvel:5, mph= wcf’,

IF charactr=""*' THEN READLN;

IF final<60 THEN grade:="F';

*)

iF count>10 THEN WRITELN(number > 10'):

T e | TR O

Inthe second form, if the Boolean-expression is TRUE, the
statement that follows the reserved word THEN is executed
and the ELSE part is ignored. If the Boolean-expression is
FALSE, the statement that follows the reserved word ELSE is
executed and the THEN part is ignored.

tple, in the following program to i A
gerslessthan 11, the loop never i

ariable never hasa valueof 11.

IF age>18
THEN WRITELN{'eligible for prize')
ELSE WRITELN(' ineligible for prize'}:

IF charactr="""
THEN READLN
ELSE sum:=sum+1;

DO (* infinite loop *)

)

Chapter 5—Flow of Control . apter 5—Flon

IF final<60
THEN grade:='F'
ELSE WRITELN{ 'You passed’');

Note that an IF-THEN-ELSE statement is a single statement
that contains two parts. A semicolon, which is a statement
separator, must not immediately precede the reserved woril
ELSE; otherwise, the ELSE part would not be considered par
of the [F statement. A semicolon is placed at the end of an IF:
THEN-ELSE statement to separate it from the next
statement.

When multiple statements follow the word THEN or ELSE,
the statements must be enclosed in the reserved words
BEGIN and END.

The following program accepts a sequence of pricesand 5
computes their total. The sequence is terminated when azemf
price is encountered. If the total cost is greater than $100, a
discount of 15% is given.

100 PROGRAM iftest;
110 VAR price,total :REAL;
120 BEGIN
total :=0.0;
WRITE(Amount: ') {$w-};
READLN(price);
WHILE price<>0.0 DO
BEGIN
total:=total+price;
READLN(price);
END; (* while price is not zero *)
IF total>100.00 {$w+} ¥
THEN WRITELN('Total price i1s $' total- @
0.15*total:10:2,'* discount *')
ELSE WRITELN('Total price is §',
total :10:2)
250 END. (* iftest *)

ter 5—Flow of Control

[il_bsted IF
statements

Nested IF statements are used when you have many
conditions to test and only one is true. For example, ifa 1
student’s grade average is from 90 through 100, he is givenan il
A; from 80 through 89, a B; from 70 through 79, a C; from 60
through 69, a D; and below 60, an F. After it is determined in
which group an average falls, no other conditions are tested.

fou passed’);

‘ELSE statement is a single statement |

3. A semicolon, which is a statement s
nmediately precede the reserved word
ELSE part would not be considered panf

semicolon is placed at the end of an IF-
it to separate it from the next

100 PROGRAM average;

110 VAR grade:REAL:

) 120 BEGIN

I 130 READLN({grade);

140 IF grade>=90

150 THEN WRITELN('grade is A')

ents follow the word THEN or ELSE,
2 enclosed in the reserved words

160 ELSE
170 IF grade>=80
accepts asequence of prices and igg ;Egg WRITELN("grade is B’)
he sequence is terminated when azeruf 200 IF grade»>=70
"the total cost is greater than $100,a 'F. 210 THEN WRITELN('grade is C')
n. ; 220 ELSE
230 IF grade>=60
i'REAL' 240 THEN WRITELN('grade is D')
’ ! 250 ELSE WRITELN(' grade is F'):
_ 260 WRITELN(' finished test')
t: ') {Sw-); i 270 END. (* average *)
10 0 DO ; Anambiguity can result when nested IFs are used. In the
’ example
otal+price: b
rice): E L 500 IF count<lQ THEN

WRITELN('value less than 10'):
510 IF count>5 THEN WRITELN('value in range')
520 ELSE WRITELN('value out of range’)

ile price is not zero)
.00 {$w+} B
LN('Total price is $', total-

Eﬁg 'a'llc.;tlgl‘ 26 r ;c: : ?:O:Pt =) i H itis not obvious whether the ELSE belongs to the first or the
; ' : second IF. The rule in Pascal is that an ELSE is part of the
) i1 closest IF that has not been matched. Thusinthe example

| above, the ELSE is part of the second IF and is performed
only when the second IF is FALSE.

This pairing of IFs and ELSEs can be changed by using the
reserved words BEGIN and END. The example above can be
changed so that the ELSE is matched with the first IF.

Chapter 5—Flow of Control

500 IF count<l0

510 THEN

520 BEGIN

530 WRITELN('value less than 10");
540 {F count>5

550 THEN WRITELN('value in range');
560 END

570 ELSE WRITELN('value out of range’);

The ELSE is not matched with the closest IF statement
because that IF statement has been closed off by an END
statement.

The following program accepts lengths for the three sides of §
triangle. The largest number is determined and the lengths |
aredisplayed. The program then determines whether the
lengths can form a triangle and if so, whether the triangle hay
aright angle. :

100 PROGRAM triangle;

110 VAR sidel,side2,side3, temp:REAL:

120 BEGIN

130 WRITE('Enter three lengths: ') {$w-};
140 READ(sidel,side2, side3) {Sw+};

150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

94

IF sidel<side2
THEN
BEGIN
temp:=sidel;
sidel :=side2;
side2:=temp;
END;
IF sidel<side3
THEN
BEGIN
temp:=sidel;
sidel:=side3;
side3:=side2;
side2:=temp;
END
ELSE
IF side2«<side3
THEN
BEGIN
temp:=side3;
side3:=side2;
side2:=temp;
END:

lhapter 5

WRITELN
IF side
THEN
BEG

w

apter 5—Flow of Control

falue less than 10');
¥

TELN('value in range’');
('value out of range'):

d with the closest IF statement
nt has been closed off by an END

wccepts lengths for the three sides of 8

nber is determined and the lengths
‘am then determines whether the

gle and if so, whether the triangle has £

{$w-};

IF sidel<side2+side3
AQ0 THEN

0 BEGIN

(! WRITE(' form a triangle');
éo IF SQR(sidel)=5QR(side2)+SQR(side3) il
i ao THEN WRITELN(' that has a right angle') |
{450 END

460 ELSE WRITELN(' do not form a triangle')
(470 END. (* triangle *)

The examples thus far have tested Boolean expressions that
are formed by using relational operators with arithmetic
expresstons. Any type of Boolean expression can be formed
totestinan IF statement. By combining two or more
conditions using the words AND or OR, you can test more
than one condition. If AND or OR is used to test relational
expressions, the expressions should be enclosed in
parentheses to ensure propet evaluation.

For example, in the statements

iF (grade>100) OR(grade<0)
THEN WRITE(' 1l legal grade'):

IF (speed>45) AND(speed<55)

THEN WRITE('driving legal speed’)

the message i | legal grade isdisplayed if grade is greater
than 100 or if grade is less than zero. The messagedriving

legal speedisdisplayed only if speed is greater than 45 and
also less than 55.

The order of precedence for the Boolean operators from
highest to lowest priority is NOT, AND, and OR.

Thus, the IF statement

iF (speed>65) AND(weight<400) OR(speed>55) AND
(weight<300)
THEN WRITE('Correct speed for jump'}:

is equivalent to the following statement.

IF ((speed>65) AND(weight<400))
OR((speed>55) AND(weight<300))
THEN WRITE('Correct speed for jump');

Chapter 5—Flow of Control

‘The order of evaluation for the logical operators NOT, AND, |
and OR isshown in the diagram below, i

IF (5>65) AND(w<400) OR(s>55) AND(w<300) AND NOT (angle<30)

L L1 L,
| |

THEN EXIT PROGRAM

The following program reads characters from the keyboard |
until an asterisk is entered. Each character must be a o
lowercase alphabetic letter, a digit from 0 through9,ora
period (.). Otherwise, a message is displayed.

100 PROGRAM logictst;

110 VAR ch:CHAR;

120 BEGIN

130 WRITE('Enter character: ') {$w-};
140 READ(ch) {S$w+};

150 WHILE ch<>'®"" DO

160 BEGIN

170 {F NOT(ch IN['a'..'z']) AND
180 NOT (ch IN[".','0'..'9'])
190 THEN WRITELN('illegal symbol'):
200 READ(ch) ;

210 END; (* while ¢ch is not '*' =)
220 END. (® logictst %)

apter 5—Flow of Control

ion for the logical operators NOT, AND,

he diagram below.

| The IF statement is used to make a decision between two
Htatement cases (if a condition is TRUE or FALSE). In Pascal, the CASE
statement can be used when the number of alternativesis

1(w<300) AND NOT (angle<30)}

A

m reads characters from the keyboard

tered. Each character must be a
letter, a digit from 0 through 9, ora
a message is displayed.

stst;

ar character: ') {$w-};

(ch IN[*a'.."z"]) AND

(ch IN[".",'0"..'9"'])

N WRITELN(' Il legal symbol');
.

vhile ch 1s not '*' *)

st *)

|

greater than two, such as when an expression can evaluate to
one of many values. This value can be an ordinal type
(INTEGER, CHAR, or BOOLEAN).

A CASE statement has the general form shown below.

CASE expression OF
constantl:statementl;
constant2:statement;

constantn:statementin,
END;

When a CASE statement is executed, the value of expression
is compared with the constants in the constant list. If the
value matches a constant, the statement that follows that
constant is executed.

In the following program, a grade is entered and cotpared to
the letters A, B, C, D, and F. An honor roll message is
displayed if the grade is an A or B; a failure message is
displayed if the grade is an F. No message is displayed if the
gradeisaCorD.

100 PROGRAM honoro!l;
110 VAR grade:CHAR;

i | 120 BEGIN
i B 130 READ{(grade} .
. 140 CASE grade OF
] 150 *A' WRITELN('blue ribbon honor roll'}); A
160 ‘B' :WRITELN{' ' red ribbon honor roll'}: :
i 170 'C": {* do nothing *):
180 'D*: {* do nothing *);
190 ‘F :WRITELN(' failure list')

200 END; (* case grade *)
210 WRITELN({'Finished’);
220 END. (* honoroll *)

If the expression in the CASE statement does not evaluate to
one of the given constants, all of the CASE statements are

bypassed and the next statement after the CASE statement is
executed. For example, lines 170 and 180 that correspond to a
Cor D can be made comments. When a C or Dis entered, none

97

Chapter 5—Flow of Control : Mhapter 5—F)

of the CASE statements between CASE and its correspondi
END match, Therefore, program execution continues with | |
line 210 as shownin the program below, i:

100 PROGRAM honorol | ;

110 VAR grade:CHAR;

120 BEGIN

130 READ(grade) ;

140 CASE grade OF

150 'A':WR!TELN('blue ribbon honor roll’y!
160 "B :WRITELN(' red ribbon honor roll’y;
170 { 'C': (* do nothing *));

180 { 'D': (* do nothing *)};

190 "F'WRITELN(failure list")

200 END; (* case grade *)

210 WRITELN('FInished');

220 END. (* honoroil *}

InaCASE statement, more than one constant may be
associated with a statement. For example, in the program

100 PROGRAM $easons;

110 VAR count : INTEGER:

120 BEGIN ;
130 WRITELN('Enter number of month ') {$w-}, &
140 READLN(count): {Sw+) i
150 CASE count OF

160 1,2, 12:WRITELN('winter month'}y ;

170 3,4,5:WRITELN('spring month');

180 6,7.8:WRITELN('sunmer month'

190 9,10.11:WRITELN{'farl month')

200 END. (* case count ")

210 END, (* seasons *) H

the number that is entered from the keyboard is compared |
with the constants 1 through 12. If the number matches one |
of the constants, the statement following that constant is
performed.

.' ﬁupter 5—Flow of Control

100 PROGRAM seasons;

110 VAR count: INTEGER;

120 BEGIN

130 WRITELN{'Enter number of month '} {$w-};
140 READLN(count); {$w+}

150 CASE count OF

between CASE and its correspondingd
program execution continues with
program below.

bl

160 1,2,12:BEGIN
170 WRITELN("winter month');
F : 180 WRITELN('cactus, poinsettia');
LN('blue ribbon honor roll'); 190 END; .
LN('red ribbon honor roll’); 200 3.4,5:BEGIN |
do nothing *)}: 210 WRITELN(' 'spring month'); I
do nothing *)): 220 WRITELN(tulip, rose');
LN(' failure list") 230 END;
grade *) 240 6,7 . B:WRITELN(" summer month’);
ished*) ¢ 250 9,10, 11:WRITELN(' fall month’)
= q 260 END; (* case count *)

270 END. (* seasons *)

ore than one constant may be
ient. For example, in the program

displays two lines of output if the constant enteredis 1, 2, 12,
3,4,0r5.

3y

3ER; The following conventions apply to the CASE statement.

« The constant(s)in the constant list must be of the same type
as the expression and must be separated by commas when
there are more than one.

ar number of month ") {$w-}. F
1y {$w+} B
RTELN('winter month');
ITELN('spring month’) ;
ITELN(' summer month’)
NRITELN(' fall month')
count *)

5 ")

S BT

i « A constant should not appear more than once in a constant
list; otherwise, only the first appearance of the constant is
used.

e

+ Multiple statements after a constant must be enclosed
between the words BEGIN and END.

ed from the keyboard is compared [§°
»ugh 12. If the number matchesone |
tement following that constantis &

« A CASE statement must contain at least one statement
preceded by a constant.

« The word END is paired with the word CASE, rather than
with the word BEGIN.

ant is to be executed after a constan

= If no match occurs, program execution continues with the
next statement after the CASE END statement.

nple, the program

Chapter 5—Flow of Control

Unconditional

The IF and CASE statements are used to perform conditional

Branch Statements branching. The branch is performed dependingupon the

The GOTO
Statement

LABEL
Declarations

value of an expression. In Pascal, there is also an
unconditional branch that enables you to execute another
part of the program, regardless of the values of expressions.
This unconditional branch is provided by means of a GOTOQ
statement.

The general form of a GOTO statement is
GOTO labe!

where label must be an integer in the range 0..9999
associated with astatement.

When a GOTO statement is performed, a branch is made to
the specified labeled statement. The interpreter options
remain unaltered during this branch. Program execution
continues from the labeled statement. Note that a GOTO
statement cannot branch into the middle of a repetition
statement or a branch statement.

The statement branched to from a GOTO statement must be
preceded by a label and a colon. Before Yyoucanuse a label,
however, you must declare it in a LABEL declaration, as
explained in the next section.

A LABEL declaration is used to declare an integer that canbe
used asa label. A label isan integer from 0 through 9999
followed by a colon that precedes a statement. This label is
distinet from the line numbers that are used when entering
program lines.

The general form for a LABEL declaration is
LABEL integer!, integer?,. integern;

where integerl, integer?,..integern must be values from 0
through 9999. You can declare multiple labelsina LABEL
declaration by separating the integers with commas.

Any label that is declared must be used to label a statement. A |
label does not, however, have to be referenced by a GOTO
statement.

Any LABEL declarations must precede CONST and VAR
declarations.

i1

b

‘liapter 5—Flow of Control

nents are used to perform conditional
is performed depending upon the

In Pascal, there is also an

hat enables you to execute another
jardless of the values of expressions. |
wch is provided by means of a GOTO

Because Pascal was designed for structured programnming,
the use of GOTO statements is not encouraged. The variety of
control statements available in Pascal usually makesa
backwards jumpin a program unnecessary. Occasionally
however, a GOTO statement is indispensable for situations
where a forward jump is needed.

The following program reads a line of input. If an asterisk (*)
was entered, its position in the line is displayed; otherwise,
the message * not foundis displayed.

JTO statement is

100 PROGRAM check:
110 LABEL 150;

integer in the range (0..9999

ent. 120 VAR iine:STRING;
130 index: INTEGER;
tis performed, a branch is made to 140 BEGIN

tement. The interpreter options
ithisbranch. Program execution
led statement. Note that a GOTO

150 WRITE('Enter line: ') {sw-},
160 READLN(line) {$w+):
170 FOR index:=1 TO LENGTH(Iine) DO

hinto the middle of a repetition 180 BEGIN
atement. 190 IF tine[index)=""*"
200 THEN
lto from a GOTO statement imust be 210 BEGIN
acolon. Before you can use a label, 220 WRITELN('* is character ', index); i
are itin a LABEL declaration, as 230 GOTO 150;
*tion. 240 END:
250 END;

260 WRITELN('* not found*) ; b
270 150:WRITELN({!ine)
280 END. (* check *)

ased to declare an integer that can bf
an integer from 0 through 9999
precedes a statement. This label is
mbers that are used when entering J

) 1. What are the three Pascal statements that can be used to
‘hapter 5 construct a loop?

ABEL declaration is |

2,..integern;

%..integern must be values from 0 i
2clare multiplelabelsina LABEL |
2the integers with commas.

imust be used to label a statement. !

2. For conditional branching, an _.statement can be
have to be referenced by a GOTQ

used when there are two choicesand a
statement can be used when there are multiple choices.

T e

B e

must precede CONST and VAR 3.Ina REPEAT statement, the loop is performed until the

specified Boolean expression is

Chapter 5—Flow of Control § Chapter 6—Ar

.Ina WHILE statement, the loop is performed while the
specified Boolean expression is

. Write a program that uses a FOR-loop to find the average u
weight of a group of people. The number of people in the
group is entered, followed by their weights. Display the
least and greatest weights and the average weight of the
group.

. Write a program that uses a REPEAT-loop to find the
average weight of a group of people. The number of peoplt |
in the group is not known; the weights are read until a zero,
{0)is input. Display the least and greatest weightsand the =
average weight of the group.

. Write a program that uses a WHILE-loop to find the
average weight. This time a negative number signalsthe &
end of the input. Display the least and greatest weights an f

the average weight of the group.

. What is the error in the following IF-THEN-ELSE
statement?

IF a<>0
THEN WRITELN{'a is not zero').
ELSE WRITELN("'a is zero'},;

-

. Write a program that accepts twelve integers with values
from 1 through 12. Use an IF statement to determine q
whethera value less than 1 or greater than 12 is entered. I{ &
aninvalid integer is entered, display a message and branch
to the end of the program. Otherwise, use a CASE #
statement to display the name of the month that
corresponds to the value entered. For example, if the '
number 2 is entered, the program displays February. If 5]
entered, the program displays May, and so on. K

L

| Chapter 6—Arrays

i)

i Introduction In programming languages, a structure called an array has
been designed for storing large amounts of data in an ordered
sequence, The first data value is stored in the first position of
the array, the second data value is stored in the second
position, and so forth. To process the data, you can access
each data value from the first value to the last value, you can
skip through the array and access only certain values, or you
can directly access a specific value without starting at the
beginning of the array.

e loop is performed whilethe
sion is

sa FOR-loop to find the average
Jle. The number of people in the
d by their weights. Display the

sand theaverage weight of the

sa REPEAT-loop to find the] &)
p of people. The number of people,
n; the weightsare read until a zera
east and greatest weights andthe

oup.

You can use an array structure in a Pascal program if you
declare the array name in the declaration section so that the
interpreter can reserve storage locations forit. In the
declaration, you declare the array name, the type of data that
the array will hold, and how many storage locations the array
will have. All the values stored in a particular array must be
of the same type.

»5 2 WHILE-loop to find the
1e a negative number signq.ls the
¢ the least and greatest weights and

1e group.
following IF-THEN -ELSE

The declaration

VAR payments:ARRAY[1..10] OF REAL;

allows you to use an array called payments that has 10
storage locations for real data values. The type of data that
the array can hold determines the base type of the array. In
the example above, the base type of the array called
payments is REAL.

is not zero'),
i is zero');

-

i Each storage location in the array is accessed by writing the
name of the array followed by the position (or index). For
example, payments[1] refers to the value stored in the first
location of the array, payments [2] refers to the valuein the

second location, and so forth.

cepts twelveintegers with values | i
an IF staterent to determine 1
an 1 or greater than 12 isentered. iy
tered, display a message and branch
am. Otherwise, use 2 CASE 3

. name of the month that

se entered. For example, if the

1e program displays February.lf5
lisplays May, and so on.

Each value in an array is referenced by the same identifier
but the index is different. The values payments[1],
payments[2]..payments[10] are called elements of the
array. Each array element can be used like any other variable
of the same data type.

The index of an array (also called a subscript) must be
enclosed in brackets and can be an INTEGER or CHAR type.
The least and greatest valtues for a subscript are the constants
that are included in brackets in the declaration. The first
constant specified must be less than or equal to the second
constant. These constants implicitly declare the index type of
the array, that is, if the index is an INTEGER type or CHAR

type.

103

The index type tells how many valuesare in an array and howl
to access them, as shown in the examples below.

Declaration Comments

VAR rvals:ARRAY[1..25] OF REAL;
The 25 REAL elements of
the array rvals are
referenced by
rvais[1]..rvals[25].
——y

range:ARRAY[-10. .10] OF REAL;
The 21 REAL elements of
the array range are
referenced by ;
range[-10]..range[10]
—itfl

year :ARRAY([1975..2000] OF INTEGER;
The 26 INTEGER elementj
of the array year are | &
referenced by year[1978)
. .year[2000]. |

ch:ARRAY['g'.. p'] OF CHAR; i
The 10 CHAR elements of |
the array ch are reference
bych['g']..chl'p’}. |

st:ARRAY[1..10] OF STRING;
The 10 elements of the
array st are strings that an
referenced by
st[1]..st[10].

If you attempt to use the wrong type of index or a larger or ;
smaller value than was declared for the array, an error
oceurs.

Note that each array location has two quantities associated
withiit.

» Anindex (or subscript)
« The contents (or value) in the location

many valuesare in an array and how
1in the examples below.

Comments

25] OF REAL;
The 25 REAL elements of
thearray rvals are
referenced by
rvals[1]. . rvals[25].]

)..10] OF REAL;
The 21 REAL elements of
the array range are
referenced by
range[-10]. .range[10)

i..2000] OF INTEGER,
The 26 INTEGER elements
of the array year are :
referenced by year [1975]
. .year[2000] .]

p'] OF CHAR;
The 10 CHAR elements of
the array ch are referencel
bych['g'])..ch['pP"]. =

| OF STRING;
The 10 elements of the .
array st are strings that afy
referenced by i
st[1l]..st[10].

s wrong type of index or alargeror |
jeclared for the array, an error

ation has two quantities associated

-Jin the location

The following program assigns values to an array in

sequential order from the first index value to the last. The

VAR declaration causes the interpreter to allocate three
consecutive storage locations for REAL data. The index (or

subscript) of the array is an INTEGER type that can be from 1
through 3.

A FOR statement is used in this illustration because the
integer control variable (which is incremented by one) can

also be used asthe array subscript to access each storage

location in the array. The first real value entered from the
keyboard is stored in the first storage location of the array
payment, the second into the second location, and the third
into the third location.

After the values are assigned, a FOR statement is used to

access and display each element from the third down tothe

100

first.

PROGRAM exlarray.

110 VAR payments:ARRAY[l. 3] OF REAL:

120
130
140
150
160
170
180
190
200

100
110
120
130
140
150
160
170
180
190
200
210
220

counter: INTEGER;
BEGIN
WRITE('Enter 3 real values:
FOR counter:=1 TO 3 DO
READ (payments[counter]);
FOR counter:=3 DOWNTO 1 DO

WRITELN(' payments(',counter,']

payments[counter]));

END. (* program exlarray*)

PROGRAM storestr;

") 8w},

{$w+}

VAR strarray:ARRAY[1..5] OF STRING;

index,counter: INTEGER;
BEGIN
WRITELN('Enter 5 strings'):
FOR index:=1 TO 5 DO
BEGIN {$w-}

WRITE('Enter string ', index,

READLN(strarray[index));
END; {$w+}
FOR index:=1 to 5 DO
WRITELN(strarray[index]);

END. (* storestr *)

is

30

+

An example of an array that stores string data is shown in the
program below. Note that the strings are read in a READLN
statement.

Chapter 6—Arrays

The arrays described so far have been one-dimensional
arrays. A one-dimensional array structure is used to hold the
valuesin a list. A one-dimensional array has only one ;
subscript written after the array name. The following
program illustrates sequential accesstothe valuesin a one-
dimensional array.

100 PROGRAM ex2array.

110 VAR muitilQ:ARRAY[1. 4] OF [NTEGER;
120 counter: INTEGER;

130 BEGIN

140 multilO[1]:=10;

150 multilO[2):=20;

160 multilO[3}:=30;

170 multilO[4]:=40;

180 FOR counter:=1 TO 4 DO

180 WRITE(multilO[counter]:5)
200 END. (* program ex2array *)}

The arraymul ti 10 is a one-dimensional array and the data | |
values stored in its locations are stored just asthey appear ifi§
list. N

multilO[1] muitilO[2] multilO[3] multilO[4] .
10 20 30 40

ar

multilOf1]
multilo[2]
mul1il10[3]
multi110[4]

' Chapter 6—Arrays

Declaring an Array You candefinean identifier as an array type by declaring the

ve been one-dimensional

ay structure is used to hold the Type identifier in a type declaration. The base type canbe any

ional array has only one predefined type or user-defined type, except a file type
(discussed in chapter 8).

ray name, The f ollowing

1 access to the values inaone- ‘
The declaration

TYPE tally=ARRAY[1..25] OF INTEGER;

1..4] OF INTEGER:)
. defines a new type called tal ly, anarray with 25 elements.

R;
The data stored in the array must be of type INTEGER and the
index of the array must be an integer from 1 through 25.
Note that the preceding TYPE declaration does not reserve 25
storage locationsfor tal ly. The TYPE declaration only
O 4 DO defines tal 1y asan ARRAY type with 25 INTEGER elements.
d{counter]:5) . L
«Jarray *) If the following VAR declaration is added after the TYPE
declaration &

dimensional array and the data

sare stored just asthey appear inj TYPE tally=ARRAY[1..25] OF INTEGER;

VAR sales.tally;

the variable called sal es is declared to be of thetype tally.
Because tallyisan ARRAY typeof 25 integers, the variabie
sales is an array that isallocated 25 storage locations for

storing integers.

] multi10[3] multil0[4] F
30 40

This type of declaration is useful especially when you have
other variables with a type you have defined. For example,

the statements

TYPE tally=ARRAY[1..25] OF INTEGER,
VAR sales:tally.

accounts:tally:

parts:tally,

define three arrays, each with 25 integer locations. If the
array size needs to be enlarged to 50, the only statement that
needs to be changed is the type declaration. For example, if
the declaration were changed to

TYPE tally=ARRAY([l..50] OF INTEGER;

each of the arrays sales, accounts, and parts would then
have 50 locations.

Chapter 6—Arrays

Random Accesste The elementsinan array can also be accessed randomly, thal |
a One-Dimensional is, any elementin anarray can be directly accessed by using
Array itsarray name and subscript in the array. The elements need
not be accessed from the beginning of the array orina

particular order.

&
For example, in the program below, you determine how many
integers (up to 100) to storein an array. Any elementinthe =
array can be displayed by entering the subscript of the array
corresponding to that element.

100 PROGRAM randomac;
110 VAR count, index: INTEGER;

120 intval ;ARRAY[1..100) OF INTEGER;

130 ch:CHAR;

140 BEGIN

150 REPEAT

160 WRITE('# of integers to enter. ')
{$w-}:

170 READLN{count) ;

180 UNTIL count IN[1..100];
190 FOR index:=1 TO count DO

200 BEGIN

210 WRITE('#: "),

220 READLN(intval[index]);
230 END,

240 WRITE('Display a value? (y or n)');
250 READLN(ch} ;
260 WHILE (ch="Y') OR(ch='y') DO

| 270 BEGIN
¥ 280 WRITE('Which value: ');
(il 290 READLN(index) ;
,ii 300 IF (index>=1} AND(index<=count)
o 310 THEN WRITELN('Value is ',
H intval [index]) {$w+};
x 320 WRITE('Display a value? (y or n)' :-
_' .I' {sw__}
Re. ! 330 READLN(ch};
¢ 340 END; (* while ch=y or Y *)

i 350 END. (* randomac *)

= | = | = | =

= = == | =

[—

Chapter 6—Arrays

Accessing the
Elements ina
Two-Dimensional
Array

To store the values in the previous table in an array called
rainfall,thearrayname rainfal | islisted in aVAR
declaration with 10 rows and 12 columns.

VAR rainfal | :ARRAY[1970..1979,1..12] OF REAL;

A two-dimensional array can also be thought of asan array ol
elements, each of which isalso an array. If you haveanarrg) §i
with 5 elements, |

arrayl
array2
arrayd
array4
arrayd

each element can be thought of as another array, asshown
below.

arrayl, arrayl, arrayl, arrayl, arrayl,
array2, array2, array2, array2, array2,
array3, array3, array3; array3, array3,
array4, array4, arrayd, arrayd, arrayd, §
array3, arrayb, array5, arrayb, array5,

Thus, a two-dimensional array can also be declared as showjl}
below.

The elements in a two-dimensional array are accessed by
entering the array name followed by the element’s row anil
column enclosed in brackets and separated by commas.

Forexample

rainfal 1[1970,7]]
row and the 7th column of the ar
rainfall. B

rainfal I [1974,10] referstothedatavaluein the 5th

array rainfall.

Chapter 6—Arrays

previoustableinan array called
wrainfal | islistedina VAR
and 12 columns.

1970..1979,1..12] OF REAL;

can alsc be thought of as an array of

isalsoanarray. If youhave an array §

aght of asanother array, asshown

arrayl, arrayl, arrayl,
array2, arrayZ, array2,
array3, array3, array3d,
arrayd, array4, array4.
array5, arrayd, arrayd;

larray can also be declared as showll

[m..n] OF ARRAY[p..q] OF type|

m..n] OF ARRAY[p..gq] OF type;: :

imensional array are accessedby
.followed by the element’s row anfl
kets and separated by commas. i
Tl
E.

refers to the data value in the st If':
row and the 7th column of the arfy
rainfall.

refers to the data value in the 5th
row and the 10th column of the |
array rainfall.

E
i
b

[

o e

The elements in a two-dimensicnal array can also be
referenced as shown below.

rainfallf1970][7] referstothedata value in the lst
row and the 7th column of the array
rainfall.

rainfal|[1974]1[10] referstothedata value inthe 5th
row and the 10th column of the
array rainfall.

A nested FOR statement is often used to access the elements
of atwo-dimensional array, The outer FOR statement
processes the rows (or columns) in an array, while the inner
FOR statement processes the columns {or rows). For example,
in the following control structure

FOR row:=1970 TO 1979 DO
FOR column:=1 TO 12 DO

the first FOR statement is used to access each row of elements
and the second FOR statement is used to access the elements
in each column of a row.

The following program can be used to assign to the array
rainfal | the valueslisted in the preceding table. Note that
the program is written so that the data is entered arow at a
time.

100 PROGRAM exdarray
110 VAR rainfal! :ARRAY[1970..1979,1..12] OF

REAL ;
120 row,column: INTEGER:
130 BEGIN
140 FOR row:=1970 TO 1979 DO
150 FOR column:=1 TO 12 DO
160 READLN{rainfall[row,column]}:

170 END. (* program exdarray *)

The elementsin the array can be accessed in any order. For
example, suppose you want to find the year in which the most
rain fell for each month. The following program compares the
elements in each row (year) of a column and determines the
largest for each column, which is then displayed.

100 PROGRAM exSarray;

110 VAR rainfal | :ARRAY[1970..1979.1..12] OF
REAL ;

120 year,row,column: INTEGER,

130 greatest:REAL:

140 BEGIN

150 FOR row:=1970 TO 1979 DO

160 FOR column:=1 TO 12 DO

170 READLN(rainfa!i[row,column}};

180 FOR column:=1 TG 12 DO

190 BEGIN

200 greatest:=0.0;

210 FOR row:=1970 TO 1979 DO

220 {tF rainfall[row,column]>greatest
230 THEN

240 BEGIN

250 greatest:-rainfal:rrow.columnn 1
260 year =row; 3
270 END;

280 WRITELN('Year ',year,' Mo ',column,
290 ‘most rain= ', greatest):

300 END: (* column :=1 to 12 =}

310 END. (* program exbarray 7)

Three-Dimensional Some problems require arrays with more thantwo
Arrays dimensions. Suppose that in the previous example you need
to store the amount of rainfall in tables for 5 townsin astaté &
When the data is recorded on paper, the data for each town i
printed on a separate page. When the dataisstoredinan |3
array, athird dimension is defined to keep each town's tably
of rainfall.

The following declaration defines a three-dimensional array |
with 10 rows by 12 columns by 5 pages of REAL values. :

VAR rainfal | :ARRAY[1970..1979,1..12,1..5] OF

] REAL ;

! Nested FOR-loops can be used to access the elements in the

B array. The outermost control structure can reference each
i the 5 towns, and the table of values for each of the towns ca
i be processed by accessing each column ineachrow. /

The following program displays a histogram of the yearly |
rainfall for each of the 5 towns. Note that the startingand =
ending years and the numbers of columns and pages are
defined as constants at the beginning of the program and cA
easily be changed. P

:REAL ;

4970 TO 1979 DO

mn:=1 TQ 12 DO
I(rainfall[row,column]);
;=1 TO 12 DO

15t:=0.0;

w:=1970 TO 1979 DO

rainfal | {row,column]>greatest
1EN

ZGIN I}
greatest:=rainfall[row,column]} h
year:=row,; 1

\D;

N('Year ', year,’' Mo ',column,

nost rain= ',greatest);

column :=1 to 12 *)
rram exbarray *)

ire arrays with more than two

»that in the previous example you need
»f rainfall in tables for 5 towns in a state,
orded on paper, the data for ea(_:h townli

a1 page. When the data isstoredinan
sion is defined to keep each town's tablg |

-ation defines a three-dimensional array
olumns by 5 pages of REAL values.

IAY[1970..1979,1..12,1..5] OF

in be used to access the elements in the 4]
it control structure can reference each [|

table of vatues for each of the towns ciiil
1ssing each column in each row.]

am displays a histogram of the yearly 3
he 5 towns. Note that the startingand '
s numbers of columns and pagesare |
; at the beginning of the program and

First, the rainfall of 5 towns for 10 years is entered in the
array rainfal I. For each town, the number of inches of
rainfall ina year is found and a colon (:) is displayed for

eachinch.

100 PROGRAM exbarray;

110 CONST startyr=1970:

120
130
140

endyr=1979;
colnum=12;
pagnum=5;

150 VAR rainfal|:ARRAY[startyr. .endyr,

160
170

1..colnum,l. pagnum] OF REAL:
row,col ,pag,scale: INTEGER;
scaletot:REAL;

180 BEGIN (* program body *)
190 FOR pag:=1 TO pagnum DO

200
210
220

FOR row:=startyr TO endyr DO

FOR col:=1 TO colnum DO
READ(rainfall[row,col,pag]):

230 FOR pag:=1 TO pagnum DO

240
250
260
270
280
290
300
310

320
330
340
350

BEGIN

WRITELN{"Rainfall for town # ', pag);
FOR row:=startyr TO endyr DO

BEGIN

WRITE(row, "~ ") {$w-},

scaletot:=0.0:

FOR col:=1 TO colnum DO
scaletot:=scaletot+rainfali[row.col,
pag):
scale:=TRUNC(scaletot):

FOR col:=1 TO scale DO
WRITE(':');

{$w+} WRITELN:

360 END; (* row:=startyr to endyr *)
370 END; (* pag:=1 to pagnum *)

380 END.

(* exbarray *)

Anarray of characters holds a sequence of characters.
Suppose you want to enter a paragraph of text from the
keyboard and have a program display the number of titmes
each of the 26 letters in the alphabet is used. If a digit from 0
through 9 is entered, the digit is replaced with its equivalent

English word.

The following program reads characters until either an
asterisk (*)or 1000 characters have been read. The characters
arestored in a characterarray. Note that when text isread, a

program must determine if it has reached the end of a line.

113

.

Chapter 6--Arrays

WChapter 6—A)

The program below uses the EOLN function (described in i
chapter 8) to determine if the end of the line (the [ENTER] | |
character) has been read. If an input statement has read the i
end-of-line character, the next characterisread for the {
variable. Otherwise, the variable would be assigned a space, |

After the text is read, it is displayed. Any digit is replaced
with its equivalent English word. The number of times each
alphabetic character is used is then displayed.

PPacked Arrays
100 PROGRAM chartest: =

110 CONST maxchar=1000:
120 VAR numchar: ARRAY['a'..'z'] OF INTEGER:

130 characir:ARRAY[1. .maxchar] OF CHAR:
140 chindex,charlet:CHAR;
150 counter,position: INTEGER:

160 BEGIN (* program chartest *)
170 FOR chindex:='a' TO 'z DO
180 numchar[chindex] :=0;

190 counter:=0;

200 READ(charlet);

210 WHILE charlet<>'*' DO

220 BEGIN
230 {F EOLN
240 THEN READ{charlet); B
250 IF charlet IN["a'..'z"] k8
260 THEN numchar[charlet):= 1
numchar[charlet]+1; | B

270 counter:=counter+l E S
280 charactr[counter]):=charlet: I 8
290 READ(charlet}); B =
300 IF counter=maxchar 0
310 THEN charlet:="*"; o
320 END; (* charlet <>'*' *)]
330 WRITELN; .
340 FOR position:=1 TO counter DO ‘.
350 BEGIN g
360 IF charactr[position] IN['0'.."'9')]
370 THEN CASE charactr[position] OF
380 'O WRITE(zero '):
390 "1':WRITE('one ');
400 "2V WRITE(two ') ;
410 "3 :WRITE('three ');
420 "4" WRITE(' four ');
430 'SUWRITE(five '),
440 "6 WRITE('six ');
450 "7 WRITE(seven '):

i 460 "B':WRITE('eight ");

ghapter 6—Arrays

sthe EOLN function (described in

if the end of the line {the [ENTER]
d. If an input statement has read the
he next character is read for the
e variable would be assigned a space.

is displayed. Any digit is replaced
lish word. The number of times each
used is then displayed.

st

1000 ;

WRRAY['a'..'z"'] OF INTEGER;
\RRAY (1. maxchar] OF CHAR;
yar let :CHAR;

sition: INTEGER;

-am chartest *)

='a' TO 'z’ DO
hindex}:=0;

£);

etex>"*' DO

READ(charlet); ﬁ
let IN('a'.."2"] ey
numchar[charlet]:=
numchar[chariet]+l;
:=counter+l
r[counter] :=chariet;
1arlet);

iter=maxchar
charlet:='*";
charlet <>"*" *)

n:=1 TO counter DO .
cactrposition] IN['O'..'Q']{
CASE charactr[position] OF |
"0 WRITE(zero '), o
"1':WRITE('one '); "
*2' WRITE(two "), L
'3 WRITE(three '),]
"4 WRITE(four '), |
‘5 WRITE(' five '),
"6 WRITE('six '), i
*7':WRITE(' seven ').
*8' :WRITE(' eight ');

Packed Arrays

A70 "9 :WRITE('nine ');

480 END (* case statement *)
490 ELSE WRITE(charactr[position]);
500 END; (* position:=1 to counter *)

510 WRITELN;

520 FOR chindex:='a' TO 'z’ DO

530 WRITELN(chindex,': ',numchar[chindex])
540 END. (* program chartest *)

In Pascal the data can be stored in an array in the minimum
amount of storage by preceding the word ARRAY with
PACKED. By packing data into arrays, you can save memory
space. Some routines require packed arrays for processing.

The declaration
170 VAR letter:PACKED ARRAY([1..26] OF CHAR;

allocates 26 storage locations for the array letter. The
elements of | et ter must be characters.

A PACKED ARRAY OF CHAR and a STRING data type are
similar, but not synonymous. The length of a PACKED
ARRAY QOF CHAR is always the length specified in its
declaration; the length of a string can change during the
execution of a program. A string's length is its dynatnic
length, that is, the number of characters that were last
assigned toit.

A STRING data type can be assigned the value of a string
constant and a CHAR data type can be assigned the valueofa
character constant. A PACKED ARRAY OF CHAR cannot be
assigned the value of a string identifier because the length of
the string is dynamic. However, a PACKED ARRAY OF CHAR
can be assigned a quoted string provided the quoted string is
the same length asthe PACKED ARRAY OF CHAR.

For example, suppose the following variables are declared.
110 VAR strl,str2:STRING;

120 chararay :PACKED ARRAY[1..28] OF CHAR,
130 ch:CHAR;

Then the following assignments are valid.

250 strl:
260 str2:

‘This string is 28 characters’;
'This is 10';

3
|

Chapter 6—Arrays 4 o apter 6—A)

270 ch:="a’'; |
280 chararay:='This string is 28 characters’; |

However, the following assignment is invalid.
300 chararay:=strl;

You can reference a PACKED ARRAY OF CHAR withiits
identifier and one less dimension than you declared in the
declaration section. For a PACKED ARRAY OF CHAR with |
one dimension, you can access the entire array with only the |
identifier. For example, if the following arrays are declared |

VAR pacl:PACKED ARRAY[1..80] OF CHAR;
pac2:PACKED ARRAY[1..80] OF CHAR;

the identifiers pacl and pac?2 can be used to access all 80
elements in the respective arrays.

In the following program, values are entered from the .
keyboard and assigned to pacl. Because paclandpac2are f
each a PACKED ARRAY OF CHAR of the same length, one |
assignment statement (line 170) can be used to assign the
elements of pacl to pac2.

100 PROGRAM entire;

110 VAR pacl:PACKED ARRAY[1..80] OF CHAR;
120 pac2:PACKED ARRAY{1..80] OF CHAR;
130 count: INTEGER;

140 BEGIN

150 FOR count:=1 TO 80 DO

160 READ{pacl[count]);

170 pac2:=pacl;

180 END. {(* entire *)

The following relational operators can be used to compare
elements in one PACKED ARRAY OF CHAR with an equal © :
number of elements in another PACKED ARRAY OF CHAR Operat}

. acna
equality returns a TRUE result if each array pacnam

element in one array is equal to its
corresponding element in another array;

i acnan
notequalto<> returnsaTRUE resultif any array elemgil Lol

in one array is unequal to its correspondi
element in another array.

L

. Chapter 6—Arrays

%

lessthan < returns a TRUE result if the first element in
the left array that is not equal to its
corresponding element in the right array is
less than that element.

‘his string is 28 characters’;

ring assignment is invalid.

trl:

lessthanor <= returnsa TRUE result if the first element in
equalto the left array that is not equal to its
corresponding element in the right array is
less than that element or if the left array
equalsthe right array.

ED ARRAY OF CHAR witp its
:sﬁ:i(i‘lxgension than you declared in tl3eh ;

Fora PACKED ARRAY OF CI_-IAR wit R
can access the entirearray with only r:d ;l A
iple, if the following arrays are decla; |

greater than> returns a TRUE result if the first element in
the left array that is not equaltoits
corresponding element in the right array is
greater than that element.

ARRAY[1..80] OF CHAR;
ARRAY[1..80] OF CHAR;

and pac2 canbe used to access all 80
yective arrays.

greaterthan>= returnsa TRUE result if the first element in
orequalto the left array that is not equal toits
corresponding element in the right array is
greater than that element or if the left
array equals the right array.

values are entered from the f.
gﬁ?& pacl.Because pacl and pac2 aril
IRAY OF CHAR of the same len_gth, ong
ant{line 170) can be used to assign the

ypac2.

For example, suppose the declarations

VAR pacnamel : PACKED ARRAY[1..4] OF CHAR;
pacname2:PACKED ARRAY[1. .4] OF CHAR;

lire; _
\CKED ARRAY[1..80] OF CHAR :
ACKED ARRAY[1..80] OF CHAR:
INTEGER;

and the assignments

nt:=1 TO 80 DO
pacl[count]};
acl,

tire *}

pacnamel :
pacname?2:

'Glen’;
'Gary':

have been made. Then the results returned by the following
operationsare as shown.

ional operators can be used_to compd
tlgl?%}DgRRAY OF CHAR with an equi
ts in another PACKED ARRAY OF Cili

Operation Resuit Comments

= i pacnamel =pacname2; FALSE Every characterinGlen isnot
RUE result if each array equal toits corresponding
:larr::::tai:m\e array isequal toits characterin Gary.,
corresponding element in another & ;
it — pacnamel<>pacname2; TRUE Atleastone characterin Glen
returns a TRUE result if any array is not equal to its

in one array is unequal to its corresji
element in another array.

corresponding character in
Gary.

Chapter 6—Arrays

_. ‘hapter 6—Arrs

Result Comments

Operation

pacnamel<pacnamez; FALSE The second characterinGlen
(Dis not less than the second
characterinGary (a).

pacnamel<=pacname2; FALSE The second characterinGlen
(1) is not less than or equal to
the second characterinGary

i (a).

pacnamel>pacname2; TRUE The second characterinGlen
(1}is greater than the second
characterinGary (a).

The second characterinGlen |
(1)is greater than or equal to
the second characterinGary

(a).

pacnamel> = pacname?;

=

You can also use the assignment and relational operators
described above with two- or three-dimensional packed
arrays and specify one less dimension than you declared in
the declaration.

For example, in the following program the array ch is
declared a packed array with two dimensions. Therefore, the §
identifier can be used with one subscript. In the first FOR- i
| loop, five characters are assigned to the five elementsin the
first row of the array (¢ch[1]). In the second FOR-loop, chis
used with one dimension. The reference ch[i ndex] accesses’ §
all of the elements of the row specified by index. The X
reference ch{1] accessesall of the elements in the first row.
Therefore, the values of the elements in the first row are !
assigned to the elements in each successive row. Each row of | |
the array is then displayed. i

N 3

100 PROGRAM expack;
110 VAR ch:PACKED ARRAY[1..10,1..5} OF CHAR,;

120 index: INTEGER;

130 BEGIN

140 FOR index:=1 TO 5 DO
150 READ(ch{l, index]);

160 FOR index:=2 TO 10 DO
170 ch[index]:=ch[1];

180 WRITELN('Array assigned'};

'hapter_G—*Arrays

Comments

190 FOR index:=1 TC 10 DO
200 WRITELN(ch[index]) i
210 END. (* expack*) |

The second characterinGlen :
(1)is not less than the second
characterin Gary (a).

If the following characters are entered, the output is as
shown.

The second characterinGlen
(1) is not less than or equal to
the second characterinGary

(a).

Input: SCOTT |
Output: Array assigned i

- SCOTT

The second characterinGlen SCOTT
(l)is greater than the second | ScoTT
characterinGary (a). : 8SCOTT
3 SCOTT

The second characterinGlen SCOTT

SCoTT

() is greater than or equal to _
the second characterinGary _

(a).

i

inment and relational operators
)- or three-dimensional packed
is dimension than you declared in

ving program the array ch is o
vith two dimensions. Therefore, the |
hone subseript. In the first FOR- ||
issigned to the five elementsinthe | |
11). In the second FOR-loop, chis |
Thereferencech[index] accessef
‘ow specified by i ndex. The |
ail of the elements in the first row,
he elements in the first row are]
n each successive row, Each row of i
1 |

'RAY[1..10.1..5]) OF CHAR;
R;

0 5 DO
dex]};

0 10 DO
h{1];
assigned'):

Chapter 6—Arrays nter 7—Pro:

Review L. Inthe array declaration, VAR test: ARRAY['a' ,'z']
Chapter 6 OF [INTEGER;, the base typeofthearray test is
— — andtheindex typeis___ .

2.The index type of an arraycanbea

3. How many storage locations are reserved for the array
salesinthe following declaration?

TYPE sales=ARRAY[1. .100] OF INTEGER:

4. Write a program that reads a word and displays it
backwards.

5. Write a program that reads 15 integers and displays them i
descending numerical order.]

6.1f a program contains the following declarations

VAR pacl:PACKED ARRAY[1. 10] OF CHAR:
pac2:PACKED ARRAY[20. .30] OF CHAR;
pac3:PACKED ARRAY[1. .18] OF CHAR;
pacd : PACKED ARRAY[1..10,1.. 10] OF CHAR:
st1:STRING[10];
$t2:STRING;
ch:CHAR;

which of the following statements are invalid and why?

stl:="'hello';
st2:="18characters long" ; —_— B
pacl:=st2; —
pac3:=st2: o B
pacl:="18characters long' ;

pac3:="18characters long’ ; -
pacl:=pac2; =
; pac2<>pac3; | |
| pac4(1]:=pacl; 2

| pacd:=pacl; . k

- T - -

¥ Chapter 7—Procedures and Functions

i Introduction A program can become rather long and hard to read when all
the statements are written in one longsequence. It is easier to
read, write, understand, and debug a program if you group

JAR test:ARRAY['a’..'2']
ype of the array tes tis

Wype sy :i' statements into blocks that accomplish a specific task. By
ycanbea or g using a top-down design, you can produce programs that are
type. § organized into blocks of programming tasks. First you write
l the general outline of the program and then define each step
g in greater detail.

ons are reserved for the array

¥ i ?
claration Suppose you want a program to display a message and four

asterisks, a message and six asterisks, and a message and four

INTEGER;
1100) OF INT asterisks. The general outline of this program is shown below.

isplays it
dsa wordand display PROGRAM usingpro;

BEGIN
display message and four asterisks
display message and six asterisks
display message and four asterisks
END.

ds 15 integers and displays themin
-der.

a following declarations

To perform each of the steps in the outline prograrm, each step
must be defined in greater detail. The following statements
display a message and four asterisks.

AY(1..10] OF CHAR;
IAY[20..30] OF CHAR;
RAY[1..18] OF CHAR.
RAY[1..10,1..10] OF CHAR;

WRITE(**");
WRITE(' four asterisks '):
WRITELN('**");

WRITELN(' ****");

§ are invalid and why? . |
Rements The next group of statements display a message and six

asterisks.

;s long" -

WRITE(""**");

B WRITE(' six asterisks '):
. i WRITELN(' ***"),
rleTlE, —___‘E-. 1 PRI RN
rs long’ ; B WRITELN(' **** y:
- j k By declaring each group of statements to be a procedure, you i
i can organize the program into blocks of programming tasks. [!
L i 1 When asection of a program body is declared tobe a

procedure (or a function), that section can be executed
several times in a program but need be written only once. All
procedure and function declarations must appear
immediately before the BEGIN of the program body.

The statements in a procedure or function are executed (or
called}at any point in a main program body or another
procedure or function body where the procedure or function

121

Chapter 7—Procedures and Functions

Procedure
Declarations

jdentifier appears. The difference betweena procedureandd §
function is that a procedure is used like a statement to }
perform a routine, whereas a function is used like a variable
to supply a value that may be usedinan expression. 1
Procedures are used to make a program modular and easier tg
understand. A function is used to compute a single value,
which is then assigned to the function identifier.

Procedures enable you to:

« write shorter programs by not replicating code.

« divide a problem into smaller independent subproblems.

« alter a program more easily because the alteration can be
made in a procedure without affecting other procedures.

« write programs that are easier to understand because the
programs are broken into logical sections.

In simptest form, a procedure appears asshown below. Notic
that a procedure follows the patternof a Pascal programin
general. Just as the term program block referstoall of the
declarations and statements in a program, the term
procedure block refers to all of the declarations and
statements in a procedure. However, in CC-40 Pascal,
procedures and functions cannot be declared withina
procedure.

procedure heading PROCEDURE identifier ;__-_

declarations LABEL _declarat ions
CONST declarations
TYPE declmns
VAR declarations

procedure body BEGIN

statements

END;

Procedure Block

e
4

_- Chapter 7—Procedures and Functions

4

ifference between a procedureanda § All declarations used must appear at the beginning of a

ure is used like a statement to ¥ procedure block in the same order as that of a program. A

eas a functionis used like a variable 3 procedure must have a BEGIN and an END, just as a program
1y be used in an expression. i does. However, the END statement of a procedure is followed
1ake a program modular and easierto | by asemicolon (;); the END statement of a program is followed
s used to compute a single value, by a period (.). It is good programming practice to place the

+ the function identifier. t name of the procedure in a comment following END to

improve program readability,

2
In the preceding program sections that display a message and

by not replicating code. : four asterisks and a message and six asterisks, each program
maller independent subproblems. section can be declared to be a procedure, as shown below.
asily because the alteration can be | Line 120 declares the first section as a procedure named
ithout affecting other procedures. ! astrisk4 and line 200 declares the second section asa

> easier to understand because the procedure named astr i sk6.

ito logical sections.
120 PROCEDURE astrisk4;

dure appears as shown beiow. Notice § (* Message with four asterisks *) |
the pattern of a Pascal program in 130 BEGIN

program block refers to all of the : 140 WRITE('**") .

antsin a program, the term 150 WRITE(' four asterisks ');

»all of the declarations and 160 WRITELN(**");

-g, However, in CC-40 Pascal, : 170 WRITELN(****"):

s cannot be declared within a | 180 END; (* astrisk4 procedure *)

200 PROCEDURE astriské;

1 (* Message with six asterisks *)
T v o 210 BEGIN

PROCEDURE identifier; | f 220 WRITE(**+* ') B
— ' - 230 WRITE(' six asterisks '); i
LABEL decliarations o 240 WRITELN(' **+") .
- —uE 250 WRITELN(***»*s").
CONST declarations i 260 END; (* astrisk6 procedure *)

Aftera procedure has been defined in a declaration, the

procedure can be executed in the program bedy by usingits {
: name as you would a statement. At each point where the

1 name of the procedure is written, the body of the procedure

TYPE declarations
— ————

VAR declarations

BEGIN i isexecuted asif it were inserted into the program at that
— b point.
.
?w ?: In the program body, suppose you want to execute the first
) T group of statements, then the second group of statements,
END; S and again the first group of statements. The program body |
ocedure Block | would then contain the statements shown below.

100 PROGRAM usingpro;
(* example program using procedures *}
110 {* procedure declaration *)

Chapter 7—Procedures and Functions éhapter 7—Pr

PROCEDURE astriskd; : ?!‘ncﬂOn
(* Message with four asterisks *) " B Declarations
BEGIN

140 WRITE(**');

150 WRITE(' four asterisks ');

160 WRITELN('***);

170 WRITELN(****");

180 END; (* astrisk4 *)

190 PROCEDURE astriské:
(* Message with six asterisks *)

200 BEGIN

210 WRITE(***');

220 WRITE(' six asterisks '):

230 WRITELN(' ***');

240 WRITELN(' ***2=x")y-

250 END; (* astrisk6 *)

260 BEGIN (* program body *)

270 asirisk4; (* Executes astrisk4 proc *)

280 astrisk6; (* Executes astriské proc *)

290 astrisk4; (* Executes astrisk4 proc *)

300 END. (* usingpro *)

The statements in the program body that contain astr i sk4
and astriské are called procedure calls. A procedure call
causes the statements defined as that procedure in the
declaration section to be executed.

triskd;
ith four asterisks *)

Dk
ur asterisks ');
t'):

.tt');

iskd *)

triské;

ith six asterisks *)

L

x asterisks ');
)
rtllilt'):
iské *)

ogram body *)

(* Executes astrisk4 proc *)
(* Executes astriské proc *)
(* Executes astriskd4 proc *)

ngpro *)

» program body that contain astrisk4
lled procedure calls. A procedure call
sdefined as that procedure inthe

1be executed.

_§ Chapter 7—Procedures and Functions

| Function
~ Declarations

e

e

P

Functions are used like variables in expressions. When an
expression is evaluated,

» the value stored in a variable location is used where the
variable name appears in that expression.

» the value of a function is computed where the function
name appears in that expression with the datainputtoit.

Insimplest form, a function appears asshown below. Notice
that a function follows the pattern of a Pascal program in
general. A functionblock contains a declaration sectionand a
statement section. However, in CC-40 Pascal, procedures
and functions cannot be declared within a function.

function heading

FUNCTION identifier:type; -
declarations LABEL declarations

CONST declarations

TYPE declarations

VAR declarations
function body BEGIN

statements (including at least one
executed statement that assigns a value
to the name of the function)

END;

Function Block

A FUNCTION declaration, like a VAR declaration, must end
with a colon followed by a data type and a semicolon. The
data typeindicates the type of value that the function
returns. Pascal functions can return INTEGER, REAL,
BOOLEAN, or CHAR type values,

All declarations used must appear at the beginningofa
function block in the same order as that of a program. A
function must have a BEGIN and an END, just as a program

does. However, the END statement of a function is followed
by asemicolon (;); the END statement of a program is followed

125

Chapter 7—Procedures and Functions

220 WRITE(

WRITEL
240 WRITEL
250 END;

by a period (.). It is good programming practice to place the |
name of the function in a comment following END to improve
program readability.

Ending a Procedure A procedure or function terminates and returns to its caller

or Function when the END statement is encountered. You can, however,
terminate a procedure or function before the END statement WRITEL!
by using the EXIT or HALT procedures. Youcanalschavea | § EXIT(re
procedure or function terminate program execution by using §° WRITELP
either the EXIT or HALT procedures. N Ct

Note that a GOTO statement cannot be used to branch outof = # astrisk
orinto a procedure or function. A GOTO statement used ina | i ¥4 astrisk
procedure or function must branch to a statement in the i return;
block containing the GOTO statement.] & astr Efk
Inthe first example below, the procedure return uses the
EXIT procedure to terminate execution of the procedure
after the message return +s terminatingisdisplayed at
line 280. Program execution continues at line 360. i
; prc

In the second example, the procedure return uses the EXIT = {' {20 PROCEDURE
procedure to terminate execution of the program afterthe | §
message return is terminatingisdisplayedat line 280, 1 WRITE("
Note that the EXIT procedure can use the identifierofthe | § | WRITE("
program or the reserved word PROGRAM to terminate i WRITELN
program execution. gl WRITELN

L 0 END; (* as
In the third example, the procedure return usesthe HALT | l 0 PROCEDURE
procedure to terminate program execution after the message i
return is terminatingisdisplayed at line 280. The HALT
at line 290 turns on the error indicator and displays the
message Programmed Halt.

Example 1

100 PROGRAM usingpro; (* example program using procedures “)

110 {* procedure declaration *) J

120 PROCEDURE astrisk4; (* Message with four asterisks *) 5 30 EXIT(usi
1

WR I TELN

130 BEGIN WR I TELN(
140 WRITE('**'); : 0 END; (* pr
150 WRITE(' four asterisks ’); j 20 BEGIN (*
160 WRITELN('**'}): 30 astrisks
170 WRITELN(' ****'); I astriské
180 END; (™ astriskd *) i) return;
190 PROCEDURE astrisk6; (* Message with six asterisks *) 9 astriska
200 BEGIN . END. (" u
210 WRITE(***"); :

126

Chapter 7—Procedures and Functions

‘ogramming practice to place the - 220

WRITE('

Six asterisks ');

PROCEDURE return; (* termination procedure *)

before this statement is displayed');

astriskd4; (* Executes astriskd4 procedure *)
astriské. (* Executes astriské procedure)

(* Executes astrisk4 procedure *}

i p 230 WRITELN('**+');

: ve

omment following END to impro 240 WRITELN(' »o»sosry.

- 250 END; (* astriské *)

'rminatesand returns to its caller b zgg BEGIN

sencountered. You can, however, ,)) ,
unction before the END statement § £80 WRITELN('return is terminating'):
*procedures. You canalsohavea ggg ﬁé:lé[:tu ra);

ninate program execution by using § A

rocedures 310 END; (* procedure return *)

’ - 320 BEGIN (* program body *)

1t cannot be used to branch out of 'gzg

tion. tement usedina F

:?ngﬁ:l?grfs:;ie?nrlnt inthe 1350 return; (* Executes return procedure “
ystatement. :.'_ 360 astriskd &

370 END. (* usingpro *)
the procedure return usesthe - B le2
tte execution of the procedure Lxample

is terminatingisdisplayed at

100 PROGRAM usingpro; (*

example program using procedures *)

(* Message with four asterisks ")

1sks ");

PROCEDURE astriské: (* Message with six asterisks *)

PROCEDURE return; (* termination procedure *)

WRITELN{' before this statement is displayed');

astriskd; (* Executes astrisk4 procedure *)
astriské: (* Executes astriské procedure 3}
return; (* Executes return procedure "y

astrisk4; (* Executes astriskd procedure *)

i i 60.
ncontinuesatline3 § 110 (* procedure declaration *)
procedure return usesthe EXIT | ;20 PROCEDURE astrisk4;
*cution of the program after the i 38 BEGIN -
rinatingis displayed at line 280. | WRITE('**"):
are can use the identifier of the {!'gg Vv:::IEIEN(f?f .”) ?Ste r
inat : :
ord PROGRAM to terminate L 170 WRITELN(**++ ')
1BO END; (* astriskd *)
rocedure return usesthe HALT ['98 EGI
gram execution after the message L 2?0 8 BI'T Cesery
is displayed at line 280. The HALT SRS m”gg, six)éste”sks N
::mdlcatorand displays the 0 WRITELN(vv 5 ;
‘ B 040 WRITELN(' *»»»*+'y,
L D0 END; (* astrisk6 *)
B - § o
; - . 270 BEGIN
am using procedures °) “f M0 WRITELN('return is terminating');
‘h four asterisks *) ' EXIT{usingpro);
Jl0 END; (* procedure return *)
% 110 BEGIN (= program body *)
330
140
Ao
- ; . 240
k |
h six asterisks =) 0 END. (* usingpro *)

Chapter 7—Procedures and Functions 1 "_hapter T—Px

Example 3 § Parameters

100 PROGRAM usingpro; (* example program using procedures *)
110 (* procedure declaration *)
120 PROCEDURE astriskd4; {* Message with four asterisks *)
130 BEGIN
140 WRITE('**"),
150 WRITE(' four asterisks ');
160 WRITELN(' **') .
170 WRITELN(****");
180 END; (* astrisk4 =)
190 PROCEDURE astriské; (* Message with six asterisks *)
200 BEGIN
210 WRITE(***');
WRITE(' six asterisks '):
WRITELN(=**");
WRITELN(' =**=*%"y
END: (* astrisk6 *)
PROCEDURE return; (* termination procedure)
BEGIN
WRITELN(' return is terminating');
HALT;
WRITELN(' before this statement is displayed’):
END; (* procedure return *)
BEGIN (* program body *)
astriskd4; (* Executes astrisk4 procedure *)
astriské; (* Executes astrisk6 procedure *)
return; (* Executes return procedure *)
astrisk4; (* Executes astrisk4 procedure *)
END. (* usingpro *)

gram using procedures *)

ith four asterisks *)

ith six asterisks *)

procedure =)
i)
1t is displayed');
| procedure *)
3 procedure *)

scedure *}
| procedure *)

X E Chapter 7—Procedures and Functions

. Parameters Procedures and functions can optionally be supplied values

3 for use in their routines. Supplyinga value to a procedure ora
4 function increasesits utility because the defined routine can
be used to perform operations on any number of values.

The values passed to a procedure or a function are called
parameters. When a procedure or function is called, the main
program specifies the parameters to be used. These values are
i 3 called actual parameters and are included in parentheses

after the procedure or function identifier.

o

When a procedure or function identifier appearsina program
body, it is called a procedure or function call, respectively.
When a procedure or function call that includes actual
parameters is encountered in a program, the current value of
each actual parameter is passed to the procedure or function.
The routine then uses these values in its calculations.

A procedure or function that is passed a value must list in its
declaration the variable that is to receive the passed value.
The variables listed in a procedure or function declaration are
called formal parameters. All formal parameters must have
their type (the type of data that is to be stored there) defined
in the declaration.

For example, if an integer value is passed to the procedure
graph, its declaration must include the variable to which the
integer value is assigned, followed by a colon and the

reserved word INTEGER as shown in the example below.,

PROCEDURE graph(formparl: INTEGER) ;

The interpreter reserves memory space for the variables
listed as formal parameters so that these variables need not
appearin a VAR declaration within the procedure or
function. Variablesin a procedure or function that are not
parameters and are not declared in the main program,
however, are defined in a VAR declaration within the
procedure or function. Note that reserved words cannot
appear as formal parameters.

The following program prompts for the number of asterisks
that are to be displayed. After a number isinput to the
program, the procedure graph is called and the program
passes the number entered from the keyboard to the
procedure. The procedure then displays the specified number fid
of asterisks. §

Chapter 7—Procedures and Functions

'Chapter 7—Pn

PROGRAM exprocl;
110 VAR times: INTEGER;
120 PROCEDURE graph(count:INTEGER) ;
130 VAR counter: INTEGER;
140 BEGIN {$w-}
150 FOR counter:=1 TO count DO
160 WRITE(C *'); {$w+}
170 WRITELN;
i 180 END; (* graph *)
g 190 BEGIN (* program exprocl *)
| 200 WRITE('Enter # of char. to display: ")

1} {3w-1;
118 210 READLN{times) {$w+};

220 graph{times);

230 END. (* program exproc¢l *)

The procedure declaration of graph requires thatany
i reference to graph in the program body must include an

{ integer expression in parentheses. This expression is
evaluated and its value passed to graph when the procedure
callis executed. Graph then assigns the value passed toit to
the variable called count.

The procedure graph could be altered so that a program can
specify both the character that is displayed and the number | |
of times the character is displayed. In this case, the procedurt .
graph requires two formal parameters that have different
(typesand must be separated by semicolons in the declaration,
Any call to graph in the main program must then include twq
actual parameters(which can be any two expressions)
provided that the first evaluates to an integer and the second
represents a character. The two parameters are separated by
acomma.

| The following program illustrates a procedure call that passei'
two parameters. |

L 100 PROGRAM exprocl;

110 VAR times: INTEGER,;

| 120 prcharac:CHAR;

i 130 PROCEDURE graph(count: INTEGER; b
charactr:CHAR) ;

140 VAR counter: INTEGER;

150 BEGIN {$w-)

160 FOR counter:=1 TO count DO

170 WRITE (charactr); {%w+}

180 WRITELN;

{ilobal
iind Local
[ldentifiers

180 END: (* graph *)
200 BEGIN (* program exprocl *)

210 WRITE('Enter character: ') {$w-}

220 READLN(prcharac) ;

230 WRITE('Enter # of char. to display: '};
240 READLN(times) {$w+};

250 graph(times,prcharac):

260 END. (* program exprocl *)

R;
‘count : INTEGER) ;
GER;

<l el

1 TO count DO
{$Sw+}

The order, number, and type of the actual parameters must
correspond exactly to the order, number, and typeof the
formal parameters. Actual parameters are separated by
commas. Formal parameters of the same type canbe listed
together, separated by commas, with the type specified once
at the end of the list. Formal parameters of different types
must be separated from each other by semicolons.

n exprocl *) '
of char. to display: ')

{$w+}

m exprocl *)

sn of graph requires that any

» program body must 'm_cluf,le an
entheses. This expression 1s

assed to graph when the procgdure
1en assigns the value passed toit to
L.

For example, if the procedure f inddata is passed three
integers, one real number, and a character, the foliowing
formal declaration could be used.

15¢ PROCEDURE finddata(numberl, number2,
160 number3: INTEGER; realval :REAL:
charactr:CHAR) ;

uld be altered so that a program can
ar that is displayed and the number
displayed. In this case, the_ procedure
1al parameters that have dif ferent:
ited by semicolonsin the fieclaratlon.
main program must then !nclude two
h can be any two expressions)
saluates to an integer and the second

The actual parametersinacall to this f i nddata procedure
must include three integer expressions, a real expression, and
acharacter expression, such as the one shawn below.,

finddata(5,10,15,4.5, 'a"):

rs are separated by 'Globat The identifiers declared aftera program heading and before
Che two paramete and Local any procedure or function declarations are called global
Identifiers identifiers. They may be used in any part of the program,

llustrates a procedure call that passes | including within a procedure or function.

Anidentifier declared in a procedure or function is called a
localidentifier and can be used only within the procedure or

:ER . functionin whichitisdeclared. A local identifier is undefined
I‘-IAR" outside its procedure or function.

unt: R.) . {
: (COPSJAFL;I TEGE 3 A local identifier supersedes a global identifier. If the same ;
IFEHER 3 ' ¥ 4 identifier is declared to be both global and local, a reference |

to the identifier in the procedure or function where it is

declared accesses the identifier declared in that procedure oy
function.

=1 TO count DO
actr); {$w+}

Chapter 7—Procedures and Functions

Declaring the same identifier as both global and local, though,
is not a good programming practice and can lead to problems,
as described later in this section.

In the following program, for example, the identifier t imes
defined immediately after the program heading is a global
variable and can be used anywhere in the program except in
graph. The identifier t imes defined in the procedure graph
is a local variable and can be used only in the procedure
graph. While the procedure graph is executing, the value of
itslocal variable t imes increments from 1 through the input
number. The global variable t imes remains unchanged.

100 PROGRAM exprocl;

110 VAR times:iNTEGER;

120 prcharac :CHAR;

130 PROCEDURE graph(count: INTEGER;
charactr:CHAR) ;

140 VAR times:|INTEGER;

150 BEGIN {3$w-}

160 FOR times:=1 TO count DO

170 WRITE(charactr); {%w+}

i80 WRITELN;

190 END; (* graph *)

200 BEGIN (* program exprocl *)

210 WRITE(Enter character: ") {$w-};

220 READLN (prcharac) ;

230 WRITE{'Enter # of char. to display: '};

240 READLN(times); {3w+}

250 graph(times,prcharac);

260 END. (* program exprocl *)

Passing Parameters can be used to pass information to and from a

Information procedure or function. A parameter that only passes
information to a procedure ora function is called a value
parameter, Using a value parameter resultsin a one-way
transfer of data. A value parameter canbe a constant, a
variable, or an expression whose value is passed toa
procedure or function.

A parameter that passes information to a procedure and
returns information back to the calling program is called a
VAR (orreference) parameter. Usinga VAR parameter 1
results in a two-way transfer of data. A VAR parameter mus{
be a variable because information is stored in it.

One-Way Tran

: Two-Way Tran:

1I .
i B 'f.l'ser-Deflned

Chapter 7—Procedures and Functions

One-Way Transfer A value parameter is declared by including the name of the

1 local, though, ' .
ras both globaland parameter and its type in a procedure or function heading.

ractice and can lead to problems,

) The interpreter reserves space for each value parameter in
tion. the heading. When a procedure or function is called, the

ample, the identifier t imes value of each actual parameter in the call is stored in its
:: :rog!:an:l heading is a global corresponding value parameter.

5 n

ywhgre oy thf‘p“;iﬂ;;iczfta:)h If anactual parameter corresponds to a value parameter, its
s definedint G;\p - value is not affected by the calied routine. When a procedure
»used oqu in ::u?;ilr)\g the value of or function changes a formal parameter that is a value
;?nr:ﬁ:; 1; g;el thrOU' gh the input parameter, its corresponding actual parameter remains
> 1 imes remains unchanged, : unchanged.

Two-Way Transfer Proceduresand functions are much more useful, however,
when they can return information to the calling program.

Normally, if one value is calculated by a program section and
t . INTEGER: returned to the calling program, the section is declared a
ount: IN ' function. When multiple values are returned, the section is
. declared a procedure.
DO User-Defined Ina function, the function name appears like a variable and is
) count 4 Functions assigned a value. This value must be of the same data type as
try: {Sw+} was declared for the function. Suppose you need to
determine which of three real values is largest. The following
o i program accepts three real values and uses a function to

exprocl)) (sw-1:] determine which value is largest. The Function name is then
1)a ract er:) ' I assigned the value of the largest real number.

of char. to dispiay: ") 100 PROGRAM examp|e:

e 1 110 VAR numi,num2,num3:REAL -
charac): ; 120 FUNCTION largest(vall, val2,val3:REAL) :REAL:

exprocl *) 130 VAR greater. greatest:REAL:
passinformation to and froma 1 ig’g BE? ;:N i1>val2
arameter that only passes 160 THEN greater =vall
> or a functionis called a value : 170 i greater : '_-Val o
)arameter results in a one-way : R tgrea el" é—va -
arameter canbe aconstant, a : 190 Tﬁgﬁa er>va =

hose value is passed to 3 greatest:=greater
pIoS ; 200 ELSE greatest:=val3;
; 210 largest :=greatest;

\formation to a procedure and P 220 END; (* function largest *)
‘othe calling program iscalleda | oao BEGIN TEC Ent o ,
eter. Using a VAR parameter il ('Enter three vaiues:) {Sw-} ;
fer of data. A VAR parameter must | 250 READLN(numl,num2,num3) {S$w+};

260 WRITELN({' Largest #: ',

largest (numl, num2, num3)) :
270 END. (* program example *)

rmation isstored init.

Chapter 7—Procedures and Functions 1 : Chapter 7—

Note that a function can have a value thatisan INTEGER,
REAL, BOOLEAN, or CHAR type and yet have parameters

that are of another type. In the following example, the

function same has parameters that are three real values but

the value that it returns is a Boolean value. Three real values

are input to the function same and if any two of the three :
sides are equal, the function hasa vatue of TRUE. If no twool §
the three sides are equal, the function has a value of FALSE.

If the value of same is TRUE, a message is displayed that at

least two sides are equal. If the value is FALSE, a message is
displayed that no sides are equal.

PROGRAM triangle,
VAR numl, num2, num3:REAL;
FUNCTION largest(vall,vai2, val3:REAL) :REAL
VAR greater,greatest:REAL;
BEGIN
IF vall>val2
THEN greater:=vall
ELSE greater:=val2;
IF greater>val3
THEN greatest:=greater
ELSE greatest:=val3;
largest:=greatest;
END; (* function largest *)
FUNCTION same (numl, num2, num3:REAL}) : BOGLEAN;
BEGIN
same:=TRUE;
IF ABS(numl-num2) >0.0001
THEN
IF ABS(num2-num3) >0.0001
THEN
{F ABS(numl-num3) >0.0001
THEN same:=false
END; (* function same *) g e
BEGIN % User-Defined
WRITE('Enter three values: ') {$w-}; § l'rocedures
READLN{ numl , num2 , num3) {$w+};]
WRITELN(Largest # entered: °,
largest {numl,num2,num3d));
{F same{numl , num2, num3)
THEN
WRITELN('At least 2 sides are equal'j
ELSE WRITELN('No sides are equal’); :
END. (* program triangle *)

have a value that isan INTEGER, F

AR type and yet have parameters
In the following example, the
ieters that are three real values but
s a Boolean value. Three real values
same and if any two of the three
ion has a value of TRUE. If no two of
the function has a value of FALSE.
UE, a message isdisplayed that at
If the value is FALSE, a message is
re equal.

e

um3:REAL;
t(vall,val2,val3:REAL) REAL;
atest :REAL;

iwr:=vall

ir;=valz;

113

1st:=greater

ist:=val3;

1test;

n largest *)

wuml , num2 , num3 : REAL) : BOOLEAN;

wm2) >0,0001

am2-num3) >0.0001

Chapter 7—Procedures and Functions

ABS(numl-num3) >0.0001
THEN same:=false
n same *)

three values: ') {$w-}:

' User-Defined
4 Procedures

am2,num3) {Sw+)

est # entered: .

|

1,num2,num3)) ; r 1

num2 , num3)

At least 2 sides are equal’') &

N(’'No sides are equal');
m triangle *)

4

Caution: If you use a variable name in the parameter list of a
user-defined function cailed by a user-defined function or
procedure, and then use that same variable name within your
program, unexpected and incorrect results can occur. The
following program shows an example of this mistake,

100 PROGRAM badresl|t:

110 VAR i, j:INTEGER:

120 FUNCTION funcl(::|NTEGER): INTEGER;
130 BEGIN

140 funcl:=i*2;

150 END; (*funcl®)

160 BEGIN (*badresit=)

170 =4

180 Ji=funcl(funcl(1)):

190 WRITELN(' i= ', i,' J= ",));
200 END. (*badres|t*)

The function call in line 180 produces an error because the
variable i is used both in the main program and in the
parameter list of funct called by a function (in this case,
itself). To correct this program, change the variable i in lines
120 and 140to a unique name such as f i, You could also use a
different variable within the program, such as k in lines 1 10,
170, 180, and 190.

This error only happens when a function is used in the
parameter list of a function or procedure call and the same
variable is used both in the parameter list and in the function
or procedure referenced.

To avoid this kind of problem, use unique variable names in
each section of a program if you are using more than one user
defined function,

When multiple values are returned from a routine, the
routine should be declared a procedure, Parameters are used
to transfer information out of a procedure by declaring them
in the procedure heading as VAR (for variable) parameters. A
VAR parameter includes every identifier between the
reserved word VAR and the next colon and type identifier.
The reserved word VAR can appear more than once in a
procedure heading.

For example, in the procedure declaration

PROCEDURE ex (VAR ang!e:REAL:count: INTEGER;
VAR sidel,side2,side3:REAL);

Chapter 7—Procedures and Functions :E } { Chapter 7—

the identifier angle isa VAR parameter whose type isREAL,
the identifier count isa value parameter whose type is
INTEGER, and the identifierssidel, side2, si de3 are VAR
parameters whose typesare REAL.

The interpreter does not allocate storage locations forany
VAR parameters. Instead, the memory location of each actual §
parameter in the procedure call is used as the memory :
location of its corresponding formal VAR parameter. Thus,

the calling program references a memory location by the
identifier listed as the actual parameter, whereas the

procedure references the same location by the identifier

listed as the formal VAR parameter.

For example, if the procedure ex is declared with the
following declaration

PROCEDURE ex (VAR angle:REAL;count: iNTEGER;
VAR sidel,side2,side3:REAL):

and the procedure is called by the following statement
ex{radian,quantity,valuel .value2,value3);

the variables angi e and rad) an share the same location as 1
the variables sidel and valuel, side2 and value2,and L+
side3 and va lue3.The variable count isallocated memaory
space when the procedure is called and the value of

quant i ty isstored there,

If a procedure changes an identifier that isdeclaredtobea =
VAR parameter, the valuein that location, whichisalsotha =
location of the actual parameter, is changed, When control
returns to the calling program, the value of the actual
parameter is what was stored there by the procedure.

Note that information passed in a VAR parameter issaid to i
passed by reference. Because the valueof a VAR parametel
can be changed by a procedure, all actual parameters
corresponding to VAR parameters must be variables.

VAR parameters and value parameters can appear inany
order in a procedure heading. The actual parametersin the
procedure call must be in the same order.

Suppose that in the previous program you want to sort from
largest to smallest the real numbers that are input. The

Chapter 7—Procedures and Functions

.R parameter whose type isREAL, §
\ue parameter whose type is
srssidel, side2, side3are VAR

eREAL.

locate storage locations for any

the memory location of each actual i
e call is used as the memory

1g formal VAR parameter. Thus,
\ces a memory location by the |
al parameter, whereas the
.ame location by the identifier

rameter.

ure ex is dectared with the

le:REAL; count : INTEGER;

ide3:REAL)
1by the following statement
atuel,value2,valued);

ad i an share the same location as da
aluel, side2and val ue2, and
iriable count isallocated memory

e is called and the value of

identifier thatisdeclaredtobea |
e in that location, which isalso the £
ameter, is changed. When control
gram, the value of theactual
jred there by the procedure.

ssed in a VAR parameter issaid to bt S
ause the valueof a VAR parameter.
edure, all actual parameters
rameters must be variables.

4
ue parameters can appear inany
ding. The actual parameters inthe |
1the same order. 1
jous program you want to sort from--
al numbers that are input. The "

s Y

=

rogra i
program would then contain a procedure that returns three

valuesinthe VAR parameters passed to it.

100 PROGRAM triangle:

110
120

130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430

VAR numl,num2, num3:REAL:

PROCEDURE largest (VAR sidel.s 1de2,

side3:

VAR temp:REAL; REAL.

BEGIN
IF sidel<side2

THEN
BEGIN
temp:=sidel;
sidel ;=side2,
side2:=temp;
END;
IF sidel<side3
THEN
BEGIN
temp:=sidel;
sidel:=side3:
side3:=side2;
side2:=temp:
END
ELSE
IF side2<side3
THEN
BEGIN
temp:=side3:
sided:=side2;
side2:=temp;

END . END;

BEGiN(procedure largest *)
WRITE('Enter three sides:
READLN(numl , num2 , num3) { $w+}
largest {numl num2, num3) : :
WRITELN(' Sides are ',nu&l-?-?

num2:7:2, num3:7:2); o

440 END. (* program triangle *)

Note that the declaration

PROCEDURE largest (VAR sidel ,Side2,side3:REAL)

* Definessidel, side2, and side3 as REAL values

* Declaressidel, side2 i i
Drocen et ot ,and s i de3 as variables within the

") fsw-},

Chapter 7—Procedures and Functions

Array Parameters

« Defines s idel, side2, and s ide3 as VAR parameters, thus
allowing the values of the corresponding actual parameters
tobe changed.

If a section of program changes the value of a global
parameter or performs input or output, the section has side
effects(that is, the program section has an effect other than
through its parameters). It is better to avoid side effects when
possible by adding parameters. However, performing input
and output in a procedure or function cannot be avoided by
using more parameters.

To summarize, parameters used only to pass informationtoa :

procedure are called value parameters and can be any
expression, including a constantora variable. Parameters
that are used both to pass information to a procedure and to
return values from the procedure are called VAR [or
reference) parameters, and must be variables.

A procedure or function may not be passed as a parameter (0 1

another routine. Constants, elements of a packed array, anil
FOR loop counters may not be passed as VAR parameters. A
file (discussed in chapter 8) can be passed only asa VAR
parameter.

An array identifier can appear as the parameter of a
procedure. Individual elements of an array can be passed tof
ptocedure as well as constants, variables, and expressions. |
Any of the following types of reference to the elementsof all
array can be used inacall to a procedure. :

realval [5]
realval[8]*0.5+6
realval [index]

Note that the data type of a parameter must be included in
the procedure heading. An array description such as i
ARRAY[I..n] OF type;, however,isnot allowed. Anarraj
type must be declared and used in the procedure heading.

For example, the heading

(* ERROR *)

150 PROCEDURE sums(grade:ARRAY[1..25] OF
INTEGER) ;

(e ERROR *3

d side3as VAR parameters, thus
corresponding actual parameters

1ges the valueof a global

at or output, the section hasside

n section has an effect other than
is better to avoid side effects when
ters. However, performing input
or function cannot be avoided by

;used only to pass informationtoa
+parametersand can be any
nstant or a variable. Parameters
nformation to a procedure andto
ycedure are called VAR (or

d must be variables.

1ay not be passed asa parameter to
15, elementsof a packed array, and
)t be passed as VAR parameters. A
3} canbe passed only asa VAR

pear as the parameter ofa

ments of anarray canbe passedtoa
tants, variables, and expressions.

s of reference to the elements of an

to a procedure.

f a parameter must be included in

An array description such as
however, isnot allowed. Anarray
1d used in the procedure heading.

g

‘grade : ARRAY[1. .25] OF

Chapter 7—Procedures and Functions

is not allowed and causes an

error. The arra
Qeclared atype asshown below and its declgrge:'lade gnbe
included in the heading, e

150 TYPE arraypar=ARRA
= Y[1..25] OF 1 .
180 PROCEDURE compute(grade:al]'raypar:;r;EGER'

In
- :Rpggg:iur;e, an array parameter should be specified asa
calling pr eter. The procedure can access the array in tfle
Procedgrggﬁlm' rather than copying the array into the

. Memory space i -
VAR parameter. ¥ space issaved by passing an array asa

Su

cm;\)tl::g:\i ﬂ?él :1?1‘1’1121;?1’9-:‘3'85})“50"5' records, each of which
items t indivi ,

each quarter of a year. hat the individual hassold in

Salesperson #1

Item 1 Item 2
Quarter | 20 35
Quarter 2 80 75 -
Quarter 3 | 30 o8
Quarter 4 a8 59
Salesperson #2
Item 1 Item 2 =
Quarter 1 20 45
Quarter 2 34 87
Quarter 3 40 79 —
Quarter4 56 43 ==

Chapter 7—Procedures and Functions

Salesperson #3

Item 1

Quarter 1 25 49

Quarter2 83 54

Quarter 3 67 98

Quarter4 23 56

Suppose you want to calculate the total quantity of sales for
each salesperson, the quarterly sales for each salesperson,
and the total amount of sales per item. The following program
accepts the data from the three salespersons’ records and
uses arrays to calculate the sales amounts.

100 PROGRAM salesrec;
110 CONST quarter=4;
120 items=2;
130 people=3;

140 TYPE amount=ARRAY[l..guarter,l.. items,1..people]} OF INTEGER }/ . :

150 cost=ARRAY[1..items] OF REAL,

160 VAR sates:amount;

170 price:cost;

180 netsales,qrtsales, itemsale:REAL:

190 fotsales:REAL;

200 count : INTEGER;

210 PROCEDURE item(part:INTEGER; VAR sarr:@amount;

220 VAR salepr:cost;VAR tsales:REAL);

230 VAR season,person: INTEGER;

240 BEGIN

250 tsales:=0.0;

260 FOR person:=1 TO people DO

270 FOR season:=l TO quarter DO

280 tsales:=tsales+sarr{season,part,person]*salepr(part];
290 END; (* procedure item *)

300 PROCEDURE yearpart(season:INTEGER; VAR sarr:amount ;
310 VAR salepr:cost; VAR gsales:REAL):

320 VAR parti.person: INTEGER;

Chagter 7—

330
- 340
- 350
360

370

- 380

390

400

BEGIN
qsaies
FOR pa

FOR p
gsal

VAR seas
BEGIN
tsales:s
FOR seas
FOR pa)
tsales
END; (* ¢
PROCEDURE
VAR s
BEGIN
FOR pers
BEGIN
WRITE
FOR g
FOR
E

Item 2

49

54

98

56

ulate the total quantity of sales for
rterly sales for each sale_sperson,
ales per item. The following program
.three salespersons’ records and

e sales amounts.

items,1. people] OF INTEGER;

a:REAL;

3 sarr.amount;
sales:REAL);

art.person]’salepr[partl:

ER; VAR sarr:amount;
gsales:REAL);

340
350
360
370

- 380
- 390
& 400
4 40

BEGIN
qsales:=0.0;
FOR part:=1 TO items DO
FOR person:=1 TO people DO
qsales:=qsales+sarr[season.part,person}*
END; (* procedure yearpart *)

salepr[part];

PROCEDURE total (person: INTEGER: VAR sarr:amount;

VAR salepr:cost;VAR tsales:REAL);
VAR season,part: INTEGER:
BEGIN
tsales:=0.0;
FOR season:=1 TO quarter DO
FOR part:=1 TO items DO

1sa|es:=tsales+sarr[season.part.person]‘salepr[part]:

END; (* procedure total *)
PROCEDURE initiliz(VAR sarr:amount :

VAR saiepr:cosi);VAR season,part,person: INTEGER;

BEGIN
FOR person:=1 TO people DO
BEGIN
WRITELN(' Enter sales for person # .pers
FOR season:=1 TO quarter DO
FOR part:=1 TO items DO
BEGIN
REPEAT

WRITE{' Quarter ',season.' item '

part,':") {$w-};
READLN(sarrrseason,part,person])
UNTIL sarr[season,part,.person] IN[
END; {$w+}
END:
FOR part:=1 TO items DO
BEGIN
REPEAT
WRITE(' Enter price of jtem ".part) {$w-
READLN(salepr[part]):
UNTIL NOT(salepr([part]<0.0)
OR(salepr[part]>10000.0);

on) ;

*

1..32767].

1%

Chapter 7—Procedures and Functions % Chapter 7—

END; {$w+} E
END; (* procedure initiliz *) 1 gt&i?.ﬁgu
BEGIN (* program body *) b LU
initiliz{sales,price);
totsales:=0.0;
FOR count:=1 TQ people DO
BEGIN
tota‘{count.sales.price.netsales);
WRITELN(Sales for # ' count.': $' .netsales:12:2):
totsales.=toisales+netsales,
END: (* count:=1 1o people *)
WRITELN{ 'Total sales: $’ ,totsales:12:2}.
FOR count:=1 TO guarter DO
BEGIN
yearpart(count.sales,prlce,qrtsales);
WRITELN(' Quarter ' count.' sales: $'.qrtsales:12:2);
END: (* count:=1 to gquarter)
FOR count:=1 TO items DO
BEGIN
|tem(count.sa|es.price.itemsale);
890 WRITELN(' Item ',count,’ sales: $' itemsale:12:2),
900 END: (* count:=1 to items ')
END. (* program salesrec ot

If the data in the preceding examples is entered for the saled
personsand $1000.00 and $2000.00 are entered for the pricea
of items 1 and 2, respectively, the output isasshown below,

Sales for #l1: % 542000 .00
Sales for #2: $ 668000 .00
Sales for #3: § 712000.00
Total sales: $ 1922000.00

Quarter 1 sales: $ 333000.
Quarter 2 sales: $ 602000 .
Quarter 3 sales: $ 547000.
Quarter 4 sales: $ 433000.
ltem 1 sales: § 506000 .00
Jtem 2 sales: $ 1416000.00

A
+

| Chapter 7—Procedures and Functions

3) _
$' .netsales:12:2);

112:2);

ales). .
es: $'.qrtsales:12:2),

)5",|temsa|e:12:2);

i the sales
xamples is entered for _
;DOO.B{) are entered for the prices
ly, the output is as shown below.

2000.00
300000
2000.00
)00.00
33300000
609000.00
547000 .00
433000 00
6000 .00
6000 .00

i, A

The FORWARD
Declaration

In Pascal, a procedure or function can call another procedure
or function only if it has already been declared in the
program. However, when procedures and functions call
many other procedures and functions, it may be impossible to
define each one before it is called. Therefore, Pascal provides
adeclaration called FORWARD that allows youtousea

procedure or function identifier in a routine before it has
been defined.

The reserved word FORWARD is written in place of the
procedure or function block. If this procedure or function has
parameters, they are specified in the FORWARD declaration
and not in the declaration that contains the routine’s block.

A procedure or function identifier that appearsin the
FORWARD declaration may be used even though its program
block has not been defined previously.

Note that in the example below, the procedure change can
use procedure al or a2 or the function compute eventhough

the blocks for these routines have not been defined at that
point.

100 PROGRAM main ;
110 PROCEDURE al{largest:REAL) ; FORWARD;
120 PROCEDURE aZ(smaliest :REAL) : FORWARD;

130 FUNCTION compute(x.y:REAL) : REAL : FORWARD:
140 PROCEDURE change(deg. rad: REAL) ;

150 VAR factor:REAL:

160 val,yval:REAL;

170 BEGIN
al(xval};
factor : =compute(xval Jyval);
a2(yval):

ENﬁ; (* procedure change *)
PROCEDURE al;
BEGIN

.END: (" procedure al *)
PROCEDURE a2:
BEGIN

.END; (" procedure a2 *)

Chapter 7—Procedures and Functions

. Chapter 7—P

FUNCTION compute;
BEGIN

compute:= real_expression

-END: (* function compute *)
BEGIN

END. (* main *)

Intrinsic Pascal provides a number of pre-defined procedures, called
Procedures intrinsic procedures, which can be accessed by writing the —
name of the procedure in place of a statement. The intrinsic - 100
procedures DELETE, INSERT, and STR are used with string 110
data. The intrinsic procedures FILLCHAR, MOVELEFT, and | |20
MOVERIGHT can be used with multiple types of arguments. tao
40
| String Procedures The followingstring procedures are used to manipulate 150
strings. - j60
|70
DELETE(string-variable,integer-expressionl,integer- |80
expression?) 1 190
returns in string-variable the string that results 100
i when the number of characters specified by integer: fl 410
it expression2 are omitted from string-variable 320
H starting at the position specified by integer 4 230
i expressionl. Both integer-expression! and integer; | f 240
i1 expression2 must be positive integers. If the number § 280
of characters specified by integer-expression2is | § 260
more than the number of charactersthatcanbe @ 270
deleted, no characters are deleted. & 280
- 4 290
INSERT(string-expression,string-variable,inleger- i :-Jgo
expression) 2310
inserts string-expression into string-variable E.'|ll'.."0 E
N —

starting at the position specified by integer
expression. 4
—_—— - —
STR(integer-expression,string-variable) |
returns in string-variable the string representation |
of integer-expression.

PROGRAM gr
VAR instr::
helio:
numby t
nbytes
strnum
BEGIN
hello:="F
€

numbytes
WRITE('En
READLN(i n
INSERT (in
WRITELN(h
nbytes:=M
STR(nbyte
INSERT (s t
WRITELN (n
DELETE (nur
nbytes: oM}
STR(nbytei
INSERT (st
WRITELN(ny
ND. (* greq

Chapter 7—Procedures and Functions

al_expression

on compute *)

h canbe accessed by writing _the_

lace of astatement. The intrlqsm
RT, and STR are used with string
res FILLCHAR, MOVELEFT, and
vith multiple types of arguments.

»f pre-defined procedures, called I

duresare used to manipulate

‘nteger-expressionl, integer-

variable the string that results

rof characters specified by integer-
imitted from string-variable

sition specified by integer-)

h integer-expressionl and integer-

. be positive integers. If tt_le nu_mbet
cified by integer-expression2is
mber of characters that can be

cters are deleted. =
JString-variable,integer-

wession into string-variable
sition specified by integer-

— —*-.
ring-variable)

100
110
120
130
140
150
160
170

180
190
200
210
220
130

40
50
60

70
280
%0
300
3o

320 END. (* greeting *)
B

variablethe string representation §

ston.

The following program uses the INSERT procedure to insert
intothestringhel loa string entered from the keyboard. The
string hel 1o isthen displayed. The number of unallocated
bytes returned by MEMAVAIL is represented as astring by
the procedure STR. The procedure INSERT then inserts the
stringinto numbytes. The DELETE procedure then deletes
the inserted characters from numbytes, and MEMAVAIL is
called to determine how many unallocated bytes of memory
are left. The number is changed to its string representation by
STR and inserted into n umby tes, which is then displayed.

PROGRAM greeting:
VAR Instr:STRING[24] .
hello:STRING[100]:
numbytes:STRlNG[lOO]:
nbytes: INTEGER:
strnum:STRING:
BEGIN
hello:='Hi there, ! You are using Pascal
on a compact computer!’);
numbytes:='You have bytes of memory left";
WRITE('Enter your name: ") {Sw-};
READLN(instr) {Sw+) ;
!NSERT(instr,hello.ll).
WRITELN(het o) ;
nbytes:=MEMAVAIL:
STR(nbytes,strnum) ;
INSERT(strnum,numbytes,10).
WRITELN(numbytes) : I
DELETE(numbytes,10.LENGTH(strnum)); |
nbytes:=MEMAVAIL
STR(nbytes.strnum);
!NSERT(strnum,numbytes,10);
WRITELN(numbytes);

Chapter 7—Procedures and Functions E‘.ap_“’.ﬂ';’_—_lfﬁ

.
% 100 PROGRAM ex:
7 110 TYPE Charr;
£ 120 VAR ch:cha)

Array Procedures Thearray procedures are normally used with arrays;
however, these procedures may be used with any other data

types(except files). These procedures are FILLCHAR,
MOVELEFT, and MOVERIGHT.

L 130 pacl: Pt
I , . - 140 pac2:Pt
FILLCHAR(multi variable,integer-expression,character- 150 BEGIN

k -160 F I LLCHAR

170 WRITELN¢
4 l8o pacl.='n

190 pac2:="'cg
1_#00 MOVELEFT
210 WRITELN(
820 WRITELN(
230 MOVER| GH
240 WRITELN(
1250 END. (* exa

expression)
FILLCHAR fills a specified number of bytes starting

at the location specified by multi-variable with the
character specified by character-expression.
Integer-expression specifies the number of bytes
that are filled. FILLCHAR can be used to filla
specific number of character positions with blanks

or Zeros.
—_

MOVELEFT(multi-variablel ;multi-variable2, integer-

expression) .
moves the number of characters specified by

integer-expression from maulti-variablel to multi-
variable2.

| MOVERIGHT(multi-variablel ;multi-variable2,integer-
| expression)
{ moves the number of characters specified by
¥1 integer-expression from multi-variablel plus
j integer-expression minus 1 to multi-variableZ plus|
|

I

integer-expression minus 1.
)

Recursion

In the example on the next page, FILLCHAR fills the array ch
with asterisks and displays the array. MOVELEFT copies 13
bytes (characters) of pac2 into pacl. The first character of
pac? ismoved to the 31st character of pacl, the second
characterof pac2 is moved to the 32nd character of pacl,
and so on until 13 characters have been moved. The arrays

pacl and pac2 are then displayed.

MOVERIGHT copies 19 bytes of pacl starting at
pacl[11]+ 19 minuslinto pacl starting at pacl [6)+19
minus 1. The characterinpacl[11] + 19 minus 2isthen
moved into pac1(6] +19minus 2, the characterin
pacl([11]+19 minus3to pacl 6] + 19 minus 3, and soon
1 until 19 bytes have been moved. The array pacl isthen E
1 displayed. Note that if a byte s modified and its contents thal
| moved, the new character in the byte is moved. ;

ally used with arrays,
.Ey b):a used with any other data

iT.

n&eger-e:xp‘ression,character-

seedures are FILLCHAR, F

Chapter 7—Procedures and Functions

< o5 A3 A —

130
140

ified number of bytes st:artmg
ﬁ“i::ag‘:)y mulit -variab{e with the
by character-expression. e
specifies the number of byte:
CHAR can be used to ‘nll a .
character positions with blanks

—_—

1, multi-variobleZ, integer

i ified by
of characters specifie .
from multi-variablel tomulti

lel maulti variable2 inleger-

-of characters specified by
tfrom multi-van’abte]_ plus \
1minus 1 tomulti variable2 plus

. 100 PROGRAM example;

110 TYPE charray=PACKED ARRAY[1..40]) OF CHAR;
120 VAR ch:charray;

pacl:PACKED ARRAY[1..43] OF CHAR;
pac2:PACKED ARRAY([1..13] OF CHAR:
150 BEGIN
160 FILLCHAR(ch,40,"'*");
170 WRITELN('ch is ', ch);

- 180 pacl:="move characters from the left or the right.';
1190 pac2:='one at a time’:

200 MOVELEFT(pacZ.pacl[BI] A3

210 WRITELN(pacl) :

220 WRITELN(pac2) :

230 MOVERIGHT (paci[11] .paclf6],19);

40 WRITELN(pacl);

250 END. (* example *)

tminus 1. —

FILLCHARfills the array ch
P wray. MOVELEFT copies 1f:3
nto pacl. The first character o
haracterof pacl, the second .
to the 32nd character of pacl, _
ts have been moved. The arrays

jplayed.

esof pacl starting at

ypacl startingat pacl[6] + 19 B

yacl[11]+ 19 minus 2_is then
ninus 2, the character in

racl [6'] +19minus 3, flnd S0 On
oved. The array pa_cl isthen ;
'te is modified and its contents
-in the byte is moved.

Recursion

Output:

ch IS ‘.‘t"*!t‘t‘“D#tt*l.*#ti*‘*.i"“*lttlt

move characters from the left one at a time
one at a time

move ieft left left left left one at a time

Caution: FILLCHAR, MOVELEFT ,and MOVERIGHT

explicitly perform as you tell them. You canhave FILLCHAR,

MOVELEFT, and MOVERIGHT write over system data and
thus have to reset the com puter to continue operation. Use
caution when you specify parameters for these procedures.

In Pascal, a procedure or a function can call itself, a feature
known as recursion. A routine cannot callitself indefinitely,
however, or an overflow condition occurs. A recursive
routine must contain a method of termination, When the
condition of termination is met, the recursive routine returns

control to the point where the procedure or function was
originally called.

A useful example of a recursive routine application is
calculating a factorial. A factorial is defined as the product of
all the positive integersup toa given integer, including the
product of the given integer. The factorial of anintegeris
written with the integer followed by an exclamation mark.
For example, the factorial of 4 is written as 4!.

By definition the factorial of zerois [. The factorials of the

integers from 1 through 5 are computed as shown on the next
page.

Chapter 7—Procedures and Functions

Fhapter 7—Pr

Given Integer Factorial

1

1*2

To use a recursive function to find the factorial of an integer,

1*2*3

1*2*3*4

1*2*3*4*5

you must first define the function asequalto 1 whenthe
given integer is 1. Thus the function factora I (1) isdefined
tobeequalto 1(factoral =1). The factorial of 2 then
becomes 1*2, which can be written as factoral (1) *2.In
the factorial of 3, 1*2*3, the product 1*2 can be replaced by
factoral (2) and 1*2*3 becomes factoral (2} *3. The
table below illustrates how a factorial is found for the first
five positive integers.

Function
Integer Factorial Function Computation §

1*2

2 1*2 factoral (2) :
factoral{1)*2 §
il

factorai(3) 1°2°3 .
(1°2)'3
factoral(2)*d_§ 100 PROGRAM tri

f 120 VAR chara:

4 1*2*3%4 factoral (4) 1°2*3*4 4 130 BEGIN (*
actoral3)4 88150 IF char,

f 160 THEN ch.
i 170 WRITE(chai

180 END; (* el
190 BEGIN (* pr
| 200 WRITELN('E
] P10 chario;

1*2*3*4*5 factoral (5) 1*'2'3*4*5
(1°2=3*4)*56
factoral(4)°*§

h

EEEES s N T TR T —— T
T
1

Chapter 7—Procedures and Functions

From the examples above then, the general formula

factoral(n)=factoral{n-1)'n

canbe derived for computing the factorial of an integer. The
/ function is written as a recursive function in the following
i program.

— 100 PROGRAM recursiv;
} 110 VAR intnum: INTEGER:
_ = 120 FUNCTION factoral{n: INTEGER) : INTEGER;
- : 130 VAR fact: INTEGER;
i 140 BEGIN
o] 150 IF n>=1

. 160 THEN fact:=factoral(n-1)"n
yn to find the factorial of an integer, 170 ELSE fact:=1;

functionasequalto 1 whenthe 180 factoral:=fact:
e function factora! {1) isdefined i 190 END; (* factoral *)
| = 1). The factorial of 2 then ; 200 BEGIN (* program body *)
ye writtenas factoral (1)*2.In 210 REPEAT
the product1‘209-1??;)"‘_3?”,%%1“ _- 220 HRITE (Enter m:ese:}r (1-7): ') {$w-}:
becomes factora - AT : 230 R LN(intnum) {$w+}:
w a factorial is found for the first = 240 UNTIL intnum IN[1..7]:
¢ 250 WRITELN(intnum, ' factoral is:
- il factoral {intnum)) ;
— Fanction 1 260 END. (* program recursiv *)
unc .
1 Function Computatiofl 1 Note that in the program, the REPEAT loop continues until a
| number from 1 through 7 is entered.

|
n

factoral (2) 1°2 . Another example of a recursive routine is shown in the
factoral(1)*2

1 following program in which text is entered from the keyboard
i and displayed in reverse order.

.
' 100 PROGRAM transpos;
F llO PROCEDURE chario;
= . A [20 var charactr:CHAR;
factoral (4) 1'2’?"5 % |30 BEGIN (* procedure chario *)
(1°2°3)°4 9140 READ(charactr):
factorai3) ' 180 IF charactre<s'
.re 160 THEN chario;
5 factoral(5) 1°2'3°4°6 B89, wriTE(charactr);

(1°2°3°4°0 W1g0 END; (* chario)
factorald)'88 190 BEGIN (* program transpos *)
e 8 200 WRITELN('Enter word followed by a blank: B
210 chario;

1*2*3
(1.2)33 1
factoral(2)*d

factoral (3)

Chapter 7T—Procedures and Functions

220 WRITELN;
230 END. (* program transpos *)

In the above program, the recursive procedure chariois
used to read and display some entered characters. When
charioisfirst called, acharacterisreadinto charactr.If
the character isnot ablank, chariois called again. The
character that is read this time is stored in the variable that Is
part of the first recursive call to char i 0. The following
paragraphs describe how the characters of the string ‘hello’
areread and saved.

In the first call to the procedure char i o, the character *h’is
stored inthe variable charact r that islocal to this call of
char i o (forsimplicity, this variable isreferred toas
charactr-1).

Because the character was not a blank, another call to
chariois made and the character ‘e’ isread. This character i |
stored in the variable charact r that is local to this call of
chario(charactr-2).Charioiscalled tostorethe
characters‘l', ‘I', and 'o’ in the variables charactr-3,
charactr-4, charactr-5, local to the 3rd, 4th, and 5th calls
tochar o, respectively.

The 5th call to chario calls chario the 6th time to read
another character when the blank character is read. This 6th
callto char i o is now finished and thus returns to its caller
(the5thcalltochario).

The statement after this call is the WRITE statement. The
characterin the variable charact r that is local to the 5th call
isthe character ‘o'. This 5th call to ¢char i 0 is now finished
and control is returned to the 4th call, which executes the
WRITE statement and displays the letter *I'. Eachcall to
charioreturnsto the previous call until the letters ‘', ‘e’,
and ‘h' have been displayed.

After the first call is finished, control is returned to the main
program block and the program terminates.

e L e e

Review 1. A procedure contains two parts. They are
Chapter 7

ol R

e

Chapter 7—Procedures and Functions

! 2. Astatement ina
program body that i
| e y contains the name of a

recursive procedure chariois
yme entered characters. When
aracter isread into charactr. If

k, char iois called again. The

time is stored in the variable that is
sallto char i o. The following

‘he characters of the string ‘hello’

3. Write a program that dis i
plays the following.
procedures to define the output. & Usetwo

!it-conceptliit

L

edure char 10, thecharacter ‘h'is
ractr that islocal to this call of |
is variable is referred to as

® * * SQummation * * *
L]

wEw

ok ETERR

5 not a blank, another calito ;

haracter ‘e’ istead. This character is i
ractr that islocal to this call of y

sarioiscalled to store the M

n the variables charactr-3, ; |
5, local to the 3rd, 4th, and bth callg . -

* * % Concept * * *» *

* * * Summation * * *
L3

IIs char i o the 6th time to read i
the blank character is read. This 6th
shed and thus returns toits caller

Eaw

LE L E L B

d 4. If the followin i .
call is the WRITE statement. The | exampleand tigiil:g:gg;‘es :;‘ci n(lj?,c: ;?1 ;he program
charactr that s local to the 5th call the value of the global vatinble dup) | 6% i line 8007
5th call to char i o isnow finished [uplicat inline 3007
s the 4th ¢all, which executes the
splays the letter ‘I'. Eachcallto a
evious call until the letters ‘', ‘e’ RE!
yed. &

100 PROGRAM example;
;10 VAR duplicat:REAL;

T

290 PROCEDURE exl:
300 VAR a,duplicat:REAL;

shed, controlis returned to the maln
! 310 BEGIN

rogram terminates. i

350 a:=duplicat;
two parts. They are

Chapter 8—File Handling

Introduction

Pascal programs use input and cutput statements to
communicate with the keyboard, the display, and peripheral
devices such as a printer. Input and output statements
transfer data to and from a file (a collection of data that hasa
declared name).

When the computer is sending data to or receiving data from
an external device, the [/O display indicator is turned on. You
cannot use the keyboard at this time (including the OFF key).
If a file is open when you press the OFF key, the file is
automatically closed before the computer is turned off.

When you use a LIST, OLD, or SAVE command, the Pascal
interpreter allows you to use a printer or a mass-storage
device by referencing the device’s code number. For
example, LIST '10’ prints the program currently in
memory to the HEX-BUS ™ Printer/Plotterand LIST '20°
lists the program to a printing or display device connected to
an R8232 peripheral. Saving a program and executing a storcd
program are discussed i in this chapter under ''Program
Storage and Execution.’

When you run a Pascal program, the interpreter
automatically opens three files for your program. These files
are defined to be files of type INTERACTIVE and are called
INPUT, OUTPUT, and KEYBOARD.

INPUT refers to the input device. If you do not
specify otherwise in an input statement, the
interpreter uses the console device to obtain
data. The console is defined to be the display
and keyboard combined. When an input
statement uses the console device, any
character typed at the keyboard is displaygi,*

KEYBOARD refersto the input device. If you specify thaf
an input statement uses KEYBOARD, any
character typed at the keyboard is not
displayed and therefore, the cursor does not |
move, 1

OUTPUT refersto the output device. If youdonot |
specify otherwise in an output statement, the
interpreter uses the console device to dlsplaj t
data.

Chapter 8—File

Handling

t and output statementsto Data Format
syboard, the display, and peripheral
Input and output statements
afile (a collection of datathat hasa
Data Records

ading data to or receiving data from
0 display indicator is turned on. You
at this time (including the OFF key}.
press the OFF key, the file is

ore the computer is turned off.

D, or SAVE command, the Pascal
1use a printer or a mass-storage
edevice's code number. qur

he program currently in
lfn"s‘i tF"rinFt)er.-gfr’l-:)tt.er and LIST '20°
nting or display device coqnected to
/ing a program and executinga stored
i this chapter under ' ‘Program

rogram, the interpreter .
pe files for your program. These files
type INTERACTIVE and are cailed
EYBOARD.

the input device. If you donot
ytherwise in an input statement, tt!e
ter uses the console device to o_btam
e console is defined to be the display
board combined. When an input
nt uses the console device, any ’ :
1 typedat Fhe keyboard is dlsplaye_'é | ——

ythe input device. If you specify that
statement uses KEYBOARD, any

ertyped at the keyboard isnot i

wd and therefore, the cursor doesnot

A lultializing a
Mass-Storage

Medium

3

ythe output device. If youdo not |
otherwise in an output st_atemept, thf: :
ster uses the console device to display

!
!
X

When a Pascal program stores, updates, or writes datatoa
peripheral device, the data is recorded in ASCII characters to
afile. All files processed by Pascal statements must be in
ASCII format.

Whenan input or output statement accesses afile, it retrieves
or stores a record of data. A record consists of fields of data.
The value of each variable in an output statement is written
inafield of arecord.

The maximum length of a record varies with the peripheral
device being used, Pascal uses a default specification for each
device, For a printer device, the maximum record length is 80
bytes.

When a WRITELN statement is executed, the values are
written to an output buffer with an end-of-line marker that
setsthe end of the record. The length of a record written by
WRITELN is the number of characters written by WRITELN,
providing the number of characters is not greater than the
maximum length allowed for the peripheral device. If
WRITELN attempts to write a record longer than one allowed
for the device, the record is repeatedly broken into records
that are the maximum allowed until the last record hasa
length of the maximum or less.

When a WRITE statement is executed, the values are written
to anoutput buffer. The WRITE statement allows the next
output statement to write its fields of data after the previous
statement's data. The data is not actually transferred to the
device until either the maximum number of characters
allowed for the record length of the device is reached in the
buffer or untila WRITELN, READ, or READLN statement is
executed.

With CC-40 Pascal, files are accessed sequentially; data must
be read in sequence from beginningto end.

If you are using a mass-storage device other than a cassette
recorder, you must use the FORMAT command to initialize a
new medium before you can use it. Forexample, the
command

FORMAT 110

initializes or formats the medium on peripheral device 110,
Note that if you format a medium that already has data onit,

the existing data islost. Refer to the peripheral manuals far
information on formatting other media.

153

Chapter 8—File Handling 4 Chapter 8—

Deleting a File The DEL cormmmand can be used to delete a file from a mass-
storage device, For example, the command

DEL 'l.payroll’
deletes the file payrol | ondevice 1.

File-Processing Pascal provides the following statements and declarations for
Keywords file handling.

File Declaration If you want to input or output data from a device other than
the console, you must declare an identifier for the device file
and the type of the file in a VAR declaration. In CC-40 Pascal,
the type of a file must be defined to be type TEXT.

Rt g o i g Pt Ty P i Py et et =

Forexample,

VAR printer:TEXT.

declares the file-identifier printer tobe afile of the
predefined type TEXT.

A TEXT file consists of a sequence of lines, each of whichisa
record. Each line consists of a sequence of characters
terminated by an end-of-line marker. After the last end-of
line marker is an end-of-file marker.

Opening and Pascal provides the intrinsic procedures RESET and

Closing a File REWRITE to open a file and the intrinsic procedure CLOSE to
save or delete a file. RESET and REWRITE open a file and
specify the identifier that is used in the program to access thg
file. If RESET or REWRITE attemptsto openafile that is
already open, an error occurs.

In this manual, the identifier associated with an open fileis
called file-identifier. A file-identifier must be declared in the
program as type TEXT.

The RESET Procedure
RESET is used to open an existing file for input. The file is
positioned to the first record. For example, the statements

VAR filel:TEXT;
BEGIN
RESET(filel, 7. address');

sed to delete a file from a mass-
2, the command

device 1.

ng statements and declarations for

nt data from a device other than
wre an identifier for the device file
VAR declaration. In CC-40 Pascal,
fined to be type TEXT.

printer tobeafile of the

guence of lines, each of whichisa
f a sequence of characters

1e marker. After the last end-of-
e marker.

ic procedures RESET and

d the intrinsic procedure CLOSE to
I'and REWRITE open afile and
sused in the program to access the
lattempts to open a file that is

urs.

erassociated withan open { i}e is
identifier must be declared in the

«xisting file for input. The file is
rd. For example, the statements

Chapter 8—File Handling

error occurs.

declare the file-identifier f i |el as a TEXT file, open the file
named address located on device 7 with the file-identifier
filel, and position the file to the first record.

You can also use RESET to position a file back to the
beginning of the file, but you must first close the file. The
statements

130 VAR filel:TEXT:

140 x:REAL;

150 BEGIN

160 RESET(filel, 1. .address');
170 READLN({filel,h x);

180 CLOSE(filel);

190 RESET(filel,'l address');

open the file address ondevice 1 with the file-identifier
filel, read one value from the file, close the file, and then
position the file back to the first field in the first record.

After you close a file, you can use the file-identifier to
openanother file as well as open the file with another
file-identifier.

If you attempt to open a write-only device such as a printer
with RESET, an error occurs.

The REWRITE Procedure

REWRITE is used to open a file for output. If the file does not
already exist, REWRITE creates a file containing only the
end-of-file marker. If the file already exists, REWRITE
deletes the existing file and creates a new file containing only
the end-of-file marker.

Forexample, the statements

130 VAR filel:TEXT;
140 BEGIN
150 REWRITE(filel,'7 . address');

open a file with a file-identifierof fi lel ondevice 7. If the
file address already exists, REWRITE deletes the file
address and creates a new file address containing only an
end-of -file marker.

If you attempt to open a read-only device with REWRITE, an

Chapter 8—File Handling

File Input
and Qutput

The CLOSE Procedure

CLOSE is used to close an open file. After the file is closed,
the file-identifier used to open the file is then no longer
associated with it. Certain options may be included inacall
to CLOSE, as shown below.

Filename opened with: RESET REWRITE
CLOSE(file-identifier) closesthe file deletesthe file |
CLOSE(file-identifier, LOCK) closesthefile closesthefile i

CLDSE(file-identiﬁer.PU'RGE} deletesthe file deletes the file

Generally, to close and saveaf ile, you should use a CLOSE as
shown below.

CLOSE(file_identifier, LOCK)

Note that if you attempt to close a file for a write-only device
{(such asa printer) with CLOSE({file-identifier) or CLOSE(file-
identifier, PURGE]), an error occurs.

When a Pascal program finishes normal execution, the
interpreter automatically closesany open files, thus
preserving the contents of the files. Files already closed ina
program are hot affected.

In Pascal, the EOLN and the EOF functions are used to
determine the status of the end-of-line or end-of-file
character. The routines READ, READLN, WRITE, and
WRITELN are provided for accessing elements of a file.

The EOLN and EOF Functions

The EOLN function is used to test the status of the end-of-line
marker. For a TEXT file, the EOLN f unction returns aTRUE
result if the next character tobe read is the end-of-line
character. Foran INTERACTIVE file (INPUT or KEYBOARD),
the EOLN function returns a TRUE result if the end-of-line
character was the last character read.

The EOF function enables you to test the status of the end-of -
file marker. For a TEXT file, the EOF functionreturns a
TRUE result if the next character to be read is the end-of -file
marker. Note that the EOF function cannot be TRUE atthe

| Chapter 8—Fil

pter 8—File Handling

re

eanopen file, After the file is closed,
d to open the file is then no longer
rtain options may be includedin a call
elow.

h: RESET REWRITE

closesthe file deletes the file

OCK) closesthe file closes the file

JJRGE) deletesthe file deletes the file

id save a file, you should use a CLLOSE as

ifier,LOCK)

apt to close a file for a write-only device|
h CLOSE(file-identifier} or CLOSE(file-
N error occurs. 5

im finishes normal execution, the
cally closes any open files, thus i
nts of the files. Files already closedina
ted.

ind the EOF functions are used to
of the end-of-line or end-of -file
ies READ, READLN, WRITE, and
ed for accessing elements of a file.

Fanctions /
;used to test the status of the end-of -linge
ile, the EOLN function returns a TRUE
-acter to be read is the end-of-line
'ERACTIVE file (INPUT or KEYBOARDJF
sturns a TRUE result if the end-of-line ||
t character read. |

ables you to test the status of the end-of
XT file, the EOF function returnsa i
xt character to be read is the end-of -file
» EOF function cannot be TRUE at the '

end of the last line; the EOF function is TRUE after the last
end-of-line character has been read. Therefore, a READLN
statement should precede an EOF test.

For an INTERACTIVE file, there is no end-of -file marker.

File Input withREAD and READLN

The READ and READLN statements can be used to read
values from a file by preceding the list of variables with the
file-identifier. If no file-identifier appears before the list of
variables, the interpreter assumes that input is from the file
INPUT or the keyboard. READ and READLN read the
different data types from a file the same way they read values
from the keyboard (except as noted above for the end-of-file
marker and end-of-line marker).

A file-identifier listed in READ or READLN must be defined
asa TEXT file. A Boolean type variable cannot appear ina
READor READLN.

The following program transfers a line from file fi lel to
file2. Note that the EOLN function is used to determine
when the end of the line has been reached. EOLN is TRUE
when the input buffer pointer is pointing to the end of the
line and FALSE otherwise.

100 PROGRAM | inetran;

110 VAR ch:CHAR;

120 filel, file2 :TEXT;

130 BEGIN

140 RESET(filel, 'l.datal’);
150 REWRITE(file2, '2.data2’);
160 WHILE NOT EOLN(filel) DO

170 BEGIN
180 READ(filel,ch);
190 WRITE(file2.ch);

200 END: (* while *)
210 WRITELN(file2);

220 CLOSE(filel,LOCK):
230 CLOSE(file2,LOCK);
240 END. (* linetran *)

The program below transfers an entire file from fi | elto
£i1e2. Note that after the last character on a line isread, the
input cursor is pointing to the end-of-line marker. A READLN
should be executed to move the cursor to the [irst character
in the next line.

187

Chapter 8—File Handling

Chapter 8—F

The end-of-file condition is TRUE only after the last end-of
line character is read. Therefore, a test for an end-of-file
condition should be made after a READLN hasbeen
executed. When the end-of-file condition becomes TRUE,
the program ends.

100 PROGRAM filetran;

110 VAR ch:CHAR:

120 filel,file2:TEXT;

130 BEGIN

140 RESET(filel,’'l.datal’),
150 REWRITE(file2, '2.data2');
160 WHILE NOT EOF{filel) DO

170 BEGIN

180 WHILE NOT EOLN(filel) DO
190 BEGIN

200 READ(filel.ch);

210 WRITE(file2,ch);

220 END; (* while not EOLN *)
230 READLN(filel};

240 WRITELN(file2);

250 END: (* while not EOF *}
260 END. (* filetran *)

The following program requires that the correct code be
entered from the keyboard before the program will run. In
this example, the code 3948 must be entered. The code is
entered from the file KEYBOARD and therefore not
displayed. If the correct code is not entered, a programmed
HALT occurs. The program prompts to determine whether
the donations made last year to charity are to be printed. The
program then accepts the total amount of money to be
donated to charity and lists the donations to a printer. When
the total has been exceeded, a message is displayed.

100 PROGRAM donation;
110 VAR numcomp: INTEGER,

120 cause, code:STRING;
130 totmoney ,money .money lef REAL;
140 f1, fpr:TEXT;

150 ch:CHAR;

160 PROCEDURE getamoun;
170 BEGIN

180 WRITE('Enter recipient: "}

190 READLN(cause)

200 WRITE('Enter amount to donate: "};
210 READLN (money} ;

220 END, (* getamount *)

Chapter 8—File Handling

TRUE only after the last end-of-
fore, a test for an end-of-file
‘ter a READLN has been

file condition becomes TRUE,

XT:

atai’);
.data2');
lel) DO

LN(filel) DO

:1.¢ch)

e2.ch);

ile not EOLN =}
)i

20k

not EOF *)

")

ires that the correct code be
yefore the program will run. In
must be entered. The code is
JARD and therefore not
eisnot entered, a programmed
rompts to determine whether
rto charity are to be printed. The
tat amount of money to be
he donationsto a printer. When
. amessage is displayed.

‘R;

iNG;
.money lef :REAL ;
1

ecipient: "),

mount to donate: '),

t ")

230 PROCEDURE lastyear:
240 BEGIN {$w+)
250 WRITELN('Load tape: ');
260 RESET(fl.'1.donate'};
270 REWRITE(fpr, 20"},
280 WHILE NOT EOF(fl} DO
290 BEGIN
300 READLN({f1l,cause);
310 READLN({ f1 . money) ;
320 WRITE(fpr.cause:25 money:14:2);
330 END:
340 CLOSE(fl,LOCK) :
350 CLOSE{ fpr,LOCK) ;
360 END; (* lastyear *)
370 BEGIN
380 numcomp:=1:
390 WRITE('Enter code: ') {Bw-}.
400 READLN({KEYBOARD, code} :
410 IF code<>'394%"
420 THEN HALT
430 ELSE
WRITE('Last year''s list? (Y or N) '),
440 READLN{(ch):
450 IF {ch="y') OR(ch="Y")
460 THEN !astyear;
470 WRITE('Enter tota! donation: '):
480 READLN(totmoney) :
490 money lef:=totmoney;
500 REWRITE(f1,'1.year'):
510 REWRITE(fpr, 20"} ;
520 getamoun;
530 WHILE moneylef-money==0.0 DO
540 BEGIN
550 WRITELN(fpr.cause:25.money:14:2);
560 WRITELN(f1,cause:25);
570 WRITELN(f1 money:14:2);
580 money lef . =money e f-money ;
590 getamoun;
600 nuUMComp : =numcomp+1 ;
610 END: (* while money left *)
620 IF numcomp=1 {$w+}
630 THEN WRITELN('More than ",1otmoney:10:2,
' given to 1 cause')
640 ELSE WRITELN('Total denation > °
totmoney:10:2);
650 END. (* donation *)

Chapter 8—File Handling

| Chapter 8—F

The PAGE
Procedure

170 Status

The procedure PAGE is used to write a form feed (page
advance) character to a file. If the file is the display, the
display is cleared and the cursor moved to column 1.

In the program below, a line of output is sent to a printer and
the PAGE procedure then sends a form feed character to the
device. The printer skips to the start of the next page and
then prints the second line of cutput.

100 PROGRAM print;

110 VAR f1:TEXT;

120 BEGIN

130 REWRITE(fl,'20'),

140 WRITELN(fLl, ' first line');
150 PAGE({fl) ;

160 WRITELN(fL, 'second line’);
170 CLOSE(f1,LOCK) ;

180 END. (* print *)

When an 10 error occurs during execution of a Pascal
program, the program is usually aborted. For example, if a
program attempts to read from a mass-storage device and the
correct medium is not loaded, the interpreter aborts the
program. An interpreter option, however, allows you to
check an input/output operation and then take appropriate
actionin the program.

Before attermpting an input/output operation, you turn off
the automatic input/output check by includinga $i -
immediately after an opening comment delimiter. For
example, when the interpreter encounters the comment

{$1-}

automatic [0 checking is suspended. To turn the checking
back on, enter the comment

{$i+}
at the point where automatic 'O checking is to be resumed.

After you have turned the 1’0 check off, the program can ;
check the status of [/0 operations by calling IORESULT. If you
are reading input from a mass-storage device, you can check
whether the correct medium is loaded with aroutine such as
that shown in the program on the next page.

Review—
Chapter 8

used to write a form feed (page
file. If the file is the display, the
e cursor moved to column 1.

line of output is sent to a printer and
2n sends a form feed character to the
sto thestart of the next page and

ne of output.

20')
fFirst line');

second line');
O
)

sduring execution of a Pascal
usually aborted. For example, if a

d from a mass-storage device and the
aded, the interpreter aborts the
‘option, however, allows you to
peration and then take appropriate

Jut/output operation, you turn of f
put check by includinga $i-

aning comment delimiter. For
preter encounters the comment

ssuspended. To turn the checking
ent

1atic IO checking is to be resumed.

1e I/0 check off, the program can

serations by calling IORESULT. If you
mass-storage device, you cancheck ©
ium is loaded with 4 routine such as| |

m on the next page.

F

Chapter 8—File Handling

Review—
Chapter 8

100 PROGRAM iocheck;
110 CONST badtape=3;
120 VAR filel:TEXT;

130 iocode: INTEGER;
140 a.b,¢:REAL;
150 BEGIN

160 (*$i- turn off automatic 1/0 checking *)
170 REPEAT

180 RESET(filel,'l.data");

190 iocode:=10RESULT,;

200 IF iocode=badtape

210 THEN WRITELN('Load correct tape:
then press ENTER');

220 IF(iocode<>0) AND(iocode<>badtape)

230 THEN HALT;

240 UNTIL iocode=0;

250 (*$i+ turn on automatic 1/0 checking *)
260 READLN(filel,.a.b,c):

270 WRITELN(a:5,b:5,¢c:5);

280 END. (* program iocheck *)

Refer toappendix [in the CC-40 Pascal Reference Guide for
the I'O status codes returned by [ORESULT.

1. Thethree predefined INTERACTIVE files are

2. The maximum length of a record is dependent upon the
— —_beingused.

3. Allfiles in CC-40 Pascal must be organized and accessed

4. Attheend of eachrecord ina TEXT file is an
marker.

5. Inthestatement
RESET(filel,'l.comps'):
the file-identifier is

the device-code is
the name of the file on the device is

Chapter 8—File Handling

1 AnswerKe

10.

11.

12

13.

What is the error in the following statements?

150 REWRITE(filel, 7.account’);
160 READ(filel,a),

Which option is used with CLOSE to ensure that a file is
alwayssaved whenit is closed?

For an INTERACTIVE file, the EOLN is true when

The EOF function is true on a TEXT file when

Write a program that displays a multiplication table of the
integers from 1 through 12. Use a procedure to display
lines between the rows of values and at the top and
bottom.

Write a program that prints the characters corresponding
to ASCII codes 31 through 127 to the printer whose device
code is 20.

Write a program that reads a TEXT file stored on device 7
and prints the data on device 20. The printed data should
be double-spaced.

Use the program in 12 and modify it so that if an asterisk is
read, the printer sends a form feed character.

Chapter 2

Chapter 3

~ Answer Key

‘ollowing statements? 'I‘his_ answer key contains the answers to the questionsin the
g Reviews at the ends of chapters 2 through 9.

7. X
LTS Chapter 2 1. run‘‘pascal”

h CLOSE to ensure that a file is 2. bye

losed? ,
3. line number

4. characterstring

le, the EOLN is true when
5. apostrophes

on a TEXT file when 6. period after the word END
plays a multiplication table of the 7. DEL

12. Use a procedure to display 8 SAVE

f values and at the top and i :

9. SAVE “l.myprog’ should be written with apostrophes as

nts the characters corresponding SAVE'1l.myprog'
h 127 to the printer whose device 10. OLD *7.myprog’

1 :
dsaTEXT filestored on device7 | Chapter3 1. program heafli(ms
vice 20. The printed datashouild | program bloc

' 2. BEGIN
d modify it so that if an asterisk is END

d ch ter.
form feed charac 3. statements

4. define

5. LABEL
CONST
TYPE
VAR

PROCEDURE/FUNCTION
6. identifier

7. measure
accountl
(5percent does not begin with a letter)
(printheader is truncated to 8 characters)
(END is a reserved word)

(sales-tx contains a character other than a letter or 4 digit)

164

Answer Key

Y

E | Answer Key

10.
11.

12.

13.

14,
15.
16.

17.

18.

19.

numeric
character
string
Boolean

REAL
32767 -32767
two apostrophes

The opening comment delimiter{* has a space between
the two characters.

NUM
REN

80
No semicolon between the two WRITELNSs.

9
{ }

Turns off the wait option
The answer is 10

The answer I1s
10

100 PROGRAM ex19;

110 BEGIN

120 WRITELN('5+5 is ',545);
130 END. (* ex19 *)

20. 100 PROGRAM ex20;

110 BEGIN

120 WRITELN(***The results are listed below***');

130 WRITELN(' x=5");
140 WRITELN(' ym10'):
150 END. (* ex20 *)
21. END
HALT
EXIT

22. semicolon

1
i
¥

Chapter 4

Answer Key

elimiter(* has a space between

he two WRITELNs.

is ',54+5);

isted below"**'}:

Chapter 4

23. NoBEGIN

No period after END
CONST

" TYPE

VAR

CHAR
INTEGER
STRING
REAL
BOOLEAN

7.567E0]1 nospace allowed
5 no digit to the left of the decimal point
12. no digit to the right of the decimal point
10
10
a 1234
b 355
C 1
d theend
83.545
-83.5
-83.55
- 83.5450
- 83.545
83.545
83.545
83.545

8 INTEGER
2.5 REAL

5 INTEGER
TRUE BOOLEAN
16.5 REAL
TRUE BOOLEAN
1 INTEGER
FALSE BOOLEAN

100 PROGRAM example8;

110 VAR st:STRING;

120 BEGIN

130 WRITE('String: ") {$w-};

140 READLN(st) ;

150 WRITELN('String length is ',
LENGTH(st)) {Sw+};

160 WRITELN(SCAN(LENGTH(st) .="2z",st));

170 END. (* example8 *)

I AnswerKey

Answer Key

9. 100 PROGRAM example9;
110 VAR stl,st2:STRING;
120 BEGIN
130 WRITE('Stringl: ') {Sw=};
140 READLN(stl),
150 WRITE('String2: '),
160 READLN(st2); {$w+}
170 IF POS(stl,st2) <0

7 =

180 THEN WRITELN('Stringl in String2 at ', POS(stl.st2))
| 190 ELSE IF POS(st2,stl) <>0
I 200 THEN WRITELN('String2 in Stringl at
,POS(st2,s1l))
1 210 ELSE WRITELN('No substrings exist -P0OS = 0');

220 END. (* example9 *)

10. 100 PROGRAM ex10;
110 VAR code: INTEGER,
120 ch:CHAR;
il 130 BEGIN 1
1 140 WRITE('Enter integer: ') {$w-}: :
150 READLN{code) ;
160 WRITE('Enter character: '):
170 READLN{(ch); f{Sw+}
180 WRITELN{(' Predecessor of ',code,’ = ',PRED(code))};
190 WRITELN('Successor of ',code,’ ',SUCC(code)}:
i 200 WRITELN('Predecessor of ’,ch,’ ' PRED(ch});
icl 210 WRITELN('Successor of ',ch,' = ',SUCC(ch)).
220 END. (* ex10 *}

L 11. 100 PROGRAM exl1; 6. 100 PROGRA

| 110 VAR celsius:REAL: 110 VAR coi

' 120 BEGIN 120 wa
130 WRITE('Enter deg C: ') {$w-}: 3 130 BEGIN

140 READLN(celsius) {%w+}: 140 leas

150 WRITELN(celsius,' deg C. = ', 150 grea!

| 160 celsius*9/5+32,' deg F.') 160 tota

! 170 END. (* exll *) 170 couni

R : 180 WRITE
Z Chapter 5 1. FOR 190 WR

! WHILE 200 RE

' REPEAT 210 REPEA
. 220 IF
2. IF 230 IF

CASE 240 tot

250 cou

260 WR1

true
270

Answer Key

ing2 at ', POS(stl,st2))

ingl at
axist =POS = 0');

:,' = ',PRED(code)),;
= ',SUCC(code)):
= ',PRED(ch)};

= " ,8UCC(ch));

deg C: ') {$w-};
s} {$w+};

us,' deg C. =
/5+32,"' deg F.

)

4. true

5. 100 PROGRAM example5;
110 VAR count, index, least, greatest: INTEGER:
120 weight,total average: INTEGER;
130 BEGIN
140 least : =MAXINT;
150 greatest:=0;
160 total :=0;

170 REFEAT
180 WRITE(' Enter # in group: ') {$w-},
190 READLN({count) ;

200 UNTIL count>0;
210 FOR index:=1 TO count DO

220 BEGIN
230 WRITE(' Weight #',index.,’ : ')
240 READLN{wei1ght) ;
250 IF weight<|east
THEN least:= weight:
260 {F weight>greatest
THEN greatest:=weight;
270 total .=total+weight:
280 END; {$w+}
290 WRITELN(Least weight is: ', least);
300 WRITELN('Greatest weight is ',

greatest);

310 WRITELN(' Average weight is: °
total /count);

320 END. (* example5 *)

6. 100
110
120
i30
140
150
160
170
180

PROGRAM example6:
VAR count, least.greatest: INTEGER:

weight , total ,average: INTEGER:
BEGIN

least : =MAXINT;

greatest :=0;

total :=0;

count:=1;

WRITELN('Enter weights, enter O to stop');
WRITE('Weight #',count,': ') {$w-};
READLN{weight) ;

REPEAT
IF weight<least THEN least:=weight;

IF weight>greatest THEN greatest:=weight;

total :=total+weight;

count :=count+l;

WRITE('Weight #',count,': ");
READLN{weight}:

Answer Key

Answer Key

280 UNTIL weight=0, {3w+}
290 WRITELN('Least weight is: ‘,least);

300 WRITELN('Greatest weight is: ' ,greatest):

310 WRITELN(Average weight is: ',total/count-1);
320 END. (* exampleé *)

——___——-\:

7. 100 PROGRAM example7;
110 VAR count,least.greatest:INTEGER;
120 weight.total.average:iNTEGER;
130 BEGIN
140 least :=MAXINT;
150 greatest:=0;
160 total :=0;
170 count:=1;
180 WRITELN{ Enter weights. neg. # to stop’):
190 WRITE('Weight 4" count,': ") {Sw-}:
200 READLN(weight);
210 WHILE weight>0 DO

220 BEGIN

230 iF weight<least THEN least =weight;

240 IF weight>greatest THEN greatest:=weight;
250 total :=total+weight;

260 count :=count+l;

270 WRITE(Weight #' count, ': s

280 READLN(we i ght) |

290 END; {$w+)

300 WRITELN(Least weight Is: ' least),

310 WRITELN(Greatest weight 1s: ', greatest);

320 WRITELN('Average weight is: ' . total/count-1);
330 END. (* exampie? *)

8. semicolon before ELSE

9. 100 PROGRAM example9:
110 LABEL 9999,
120 VAR count, index: INTEGER;
130 BEGIN
140 WRITELN('Enter 12 integers (1-12):"):
150 FOR index:=1 TQ 12 DO

160 BEGIN

170 WRITE('#" . index,': ") {$w-}:
180 READLN{(count): {$w+}

190 IF(count<l) OR {count>12)

200 THEN

210 BEGIN

220 WRITELN(Invalid entry’);
230 GOTO 9999;

240 END,

Chapter 6

5. 100 PROGRA
110 CONST
120 TYPE
130 VAR so

least) ;
', greatest);
', total/count-1}

to stop’);
{$w-};

st:=weight;
greatest:=weight;

')

east);
", greatest);
.total/count-1);

Answer Key

e9;

X : INTEGER;

er 12 integers {1-12):');
TO 12 DO

i',index,': ') {sw-};:

ount); {$w+}
:<1) OR (count>12)

IN

RITELN{ Invalid entry');

JTO 9999

Chapter 6

250 CASE count OF

260 L:WRITELN(' January');
270 2:WRITELN(' February');
280 3:WRITELN('March');
290 4:WRITELN(April '),

300 5:WRITELN("May"') :

310 6:WRITELN(' June');

320 7 WRITELNC July'):

330 8:WRITELN(August’);
340 9:WRITELN('September"');
350 10:WRITELN('October) ;
360 11:WRITELN('November ') :
370 12:WRITELN('December '} :
380 END; (* case *)

390 END; (* FOR-loop *)

400 9999 :WRITELN('Finished'}:
410 END. (* example9 *)

INTEGER
CHAR

CHAR
INTEGER

None—atype declaration defines the identifier sales as
anarray type. A VAR declaration is used to allocate
storage for arrays.

100 PROGRAM inout:

110 VAR ch:ARRAY[1..80] OF CHAR:
120 count, index: INTEGER:

130 BEGIN

140 index:=0;

150 WRITE('Enter word: ') {Sw-};
160 REPEAT

170 index:=index+];

180 READ(ch{index]) ;

190 UNTIL chlindex]=" ",

200 FOR count:=index-1 DOWNTO 1 DO
210 WRITE(ch[count]);

220 {3w+} WRITELN;

230 END. (* inout *)

B. 100 PROGRAM example5:
110 CONST maxnum=15;
120 TYPE intarray=ARRAY[1..maxnum] OF INTEGER:
130 VAR sort:intarray:

T e 5

A e — e

Answer Key

1 AnswerKey

index, fixed, temp: INTEGER;

150 BEGIN

160 FOR index:=1 TO maxnum DO

170 BEGIN {Sw-}

180 WRITE('Enier integer # ,index,': ")
190 READLN(sort[index]).

200 END; {3w+}

210 FOR fixed:=2 TO maxnum DO

220 BEGIN

230 FOR index:=maxnum DOWNTO fixed DO

240 BEGIN

250 IF sort[index]>sort[index-1]

260 THEN

270 BEGIN

280 temp:=sort[index-1];

290 sort[index-1]:=sort[ndex].
300 sort[index] : =temp;

310 END; (* swap adjacent elements *)
320 END; (* one pass through array ")
330 END: (* all elemenis are sorted *)

340 WRITELN('Descending order of integers: 'Y
350 FOR index:=l TO maxnum DO

360 WRITELN(' Integer #',index,': ',sort[index]};

370 END. (* exampieS *)

Chapter 7

6.

valid

valid

invalid—a string variable cannot be assigned to a packed
array of char,

invalid—a string variable cannot be assigned to a packed
array of char.

invalid —the string constant is too long to be assigned to
the array.

valid

invalid—the two arrays are not the same length,

invalid —the two arrays are not the same length.

valid

invalid—illegal number of subscripts with array pac4.

statements
declarations

procedure call

100 PROGRAM example3,

110 PROCEDURE concept,

120 BEGIN

130 WRITELN{'* * * = Concept * * * *'};

Chapter 8

Answer Key

'Lindex, " "}

TO fixed DO

[index-1]

idex-1];
r=sort[index];
temp;

tjacent elements *)
ugh array *)
sorted *)

>f integers: ');

', sort[index]);

140 WRITELN;

150 WRITELN¢® L I
160 WRITELN(' * EEDE
170 WRITELN(' ® 'y,
180 WRITELN;
1 190 END; (* procedure concept °)
200 PROCEDURE sum;
210 BEGIN
220 WRITELN('* * * Summation * * 'y
230 WRITELN(' =y
240 WRITELN(® LALLM
250 WRITELN(® Ta dEhEEYy .
260 WRITELN;
I 270 END; (* procedure concept *)

280 BEGIN (* program body *)
290 concept;

300 sum;
310 concept ;
320 sum;

330 END. (* example3 *)

4. No, the procedure ex1 uses the local variable duplicat.

iable cannot be assigned to a packed
iable cannot be assigned to a packed
onstant js too long to be assigned to
aysare not the same length.

ays are not the same length.

ber of subscripts with array pacé4.

npleld,
ncept;

* * o 5 Concept * " * *');

{ Chapters 1. INPUT
KEYBOARD
OUTPUT
2. device

3. sequentially
4. end-of-line
I 5. hiel

1
comps

6. The READInline 160 is attempting to read from a file |
opened for cutput,

7. LOCK
8. thelastcharacter read was the end-of-line marker.

9. thenext character to be read is the end-of -file marker.

T '..l.-,r__is-_-_:-_-.;":;';_ o —ear _':'H__ = _:_ i

Answer Key

. Answer Key

10. 100 PROGRAM table;
110 VAR countl,count2: INTEGER:

120 pr:TEXT:

130 PROCEDURE !ines:

140 BEGIN

150 WRITELN(pT , ' —m—mmmmmmm=—=mm===—om=wmomsmo s T

160 END: (* lines *)

170 BEGIN

180 REWRITE(pr,'50').

190 WRITELN(pr).

200 WRITELN(pr,‘MuItipI|cat|on table for i1ntegers:
to 12':46).

210 1ines;

220 WRITELN(pr);

230 WRITE{(pr." ')

240 FOR counil:=1 TO 12 DO

250 WRITE(pr.countl:4);

260 WRITELN(pr):

270 lines;

280 FOR countl:=1 TO 12 DO

290 BEGIN

300 WRITE(pr.countl:Z).

310 FOR count2:=1 TO 12 DO
320 WRITE(pr.countl'coun12:4),
330 WRITELN{pr) .

340 lines;

350 END; {(* countl all rows %)
360 lines,

370 END. (* table *}

11. 100 PROGRAM exll;
110 VAR index: INTEGER:
120 pr:TEXT;
130 BEGIN
140 REWRITE(pr, 20');
150 FOR index:=31 TO 127 DO
160 WRITELN(pr,CHR(index));
170 END. (* exll %)

12. 100 PROGRAM ex12;
110 VAR filein.pr:TEXT,
120 st :STRING;
130 BEGIN
140 RESET(filein,'7 filel0"),
150 REWRITE(pr, 20"},

1

13.

160 WHI

220 END.

100 PROGR
110 VAR f

130 BEGIM
140 RES
150 REY

i Answer Key
|

[160 WHILE NOT EOF(filein) DO
[170 BEGIN

180 READLN(filein.st);
Lt 190 WRITELN(pr,st):

200 WRITELN(pr) :

210 END:

_________________________ | 220 END. (".ex12)

|13.100 PROGRAM ex13;
110 VAR filein,pr:TEXT:

120 ch:CHAR;
130 BEGIN
Fan tablle for Thtegerss i 140 RESET(filein,'7 filel0'):

150 REWRITE(pr,'20'):
160 WHILE NOT EOF(filein) DO

170 BEGIN
180 READ(filein,ch);
190 {F ch="'*"
200 THEN PAGE(pr) ;
210 WRITE(pr.ch);
220 IF EOLN(filein}
230 THEN
240 BEGIN
250 READLN(filein):
260 WRITELN(pr) .
! DO o 270 WRITELN(pr};
ount2:4); 280 END: (* EOL and blank |ine *)
290 END; (* end-of-file)
300 END. (* ex13 *)
ws ")
11;
INTEGER;
T;
pr,'20');:

x:=31 TO 127 DO
N{pr,CHR(index}):
11 *)

12;
pr:TEXT;
ING;

lein,'7.filel0");
pr,'20');

o, v s

e

I T e AT

174

A
a(audible tone)—26, 27
ABS-—64, 69
Absolute value—64, 69
Actual parameter—131, 136
Algorithm—17
Allocation of memory—136, 139
AND-58, 60, 61, 95
Apostrophe—21, 27, 40
Argument—64
Arithmetic operators—50, 51, 53
Array—103
declaration—103, 107
parameters—138, 139
procedures—146
of arrays—110
of characters—115
type—107, 138
ASCII-55, 56, 153
Assignment
operator—42
statements—42, 43
ATAN-T0
Audible tone—26, 27,28
Automatic Power Down™—10

B
Base type—107
BASIC command level—8, 10
BEGIN—19,23,87,02,93,99,121, 123,
125
Binary operator—=51, 54
Blocks—122
BOLDFACE—19
Boolean
constant—21
functions—73
operators—57
Boolean-expression—86, 87, 91, 95, 96
BOOLEAN type—42
Brackets— 10, 41, 103
BREAK—8, 32
Breakpoint—32, 33
BYE—-10

C
CASE-91,97,99
CHAR—38, 46

Character
array—116
constant—21
function—71
operators—55
CHAR type—40, 41, 103
Check input/output—26, 160
CHR-71
CLOSE—154, 166
Closing a file—156
CLR—8, 13, 14,32
Column—78
Command—18
Comments—25, 26
Compiler—17
Compound statement—83, 87
CON-32
CONCAT-72
Conditional branch statements—82, 91
CONST—19, 36,41
Constant—20, 21, 36
Constant declarations—36
CONTINUE—32
Control
statements—82
variable—83, 84, 86
COPY-T72
COS=70
Counter—84
CTL—13
Cursor—28, 47,78, 152, 158

D
Data
format—76, 153
records—153
Debugging a program—32
Decimal notation—75
Declarations—18, 19
order—19
Default options—27
DEL—14, 154
DELETE—144, 145
Deletinga file— 154, 155
Delimeter—20
Device number—152
DIV-51, 60
DOWNTO-—84, 86
Dynamic length—41

Editing program
Elements—103,
ELSE-91,92,9
Empty string—4
END-19, 23, 29
End-of-file marl
End-of-line

character—4
condition—1!
marker—153

Ending a proced
ENTER—11, 28,
EQF-73, 156
EOLN--73, 156
Equal to—52, 55
Equality —57

testing for—{

Error

codes—31
handling—:3¢0

Errors—12
EXIT-30
Execution-—11

errors—30
of a stored pre

EXP—70

Exponent—39, 4

Expression—36,

F
Factorial—147, |
FALSE—42,52, ¢
Field-width speci
76,78
File
declaration—|
handling— 15
type—152
File-identifier—1
File-processing ki
FILLCHAR—144,
Flow of control—.
FN—10
FOR—83, 85, 89,
Formfeed—160
Formal parameta

aracter
array—116
constant—21
function—71
operators—55
{ARtype—40,41, 103
eck input/output—26, 160
IR-71
JOSE—154, 156
osinga file—156
.R—8,13,14,32
Mumn—78
ymmand—18
>mments—25, 26
ampiler—1i7
ympound statement—83, 87
IN-=-32
INCAT-T72
snditional branch statements—82, 91
ONST—19, 36,41
onstant--20, 21, 36
onstant declarations—36
ONTINUE—32
ontrol
statements—82
variable—83, 84, 86
OPY-72
08—70
ounter—84
TL—13
ursor—28, 47, 78, 152, 158

)
ata
format—76, 153
records—153
rebugging a program—32
)ecimal notation—75
)eclarations—18, 19
order—19
yefault options—27
JEL—14, 154
JELETE-144, 145
Jeleting a file—154, 155
Jelimeter—20
Yevice number—152
NV-—51, 60
YOWNTO—84, 86
Jynamic length—41

E
Editing program lines—12, 13
Elements—103, 107, 138
ELSE—91, 92,93
Empty string—41
END-19, 23,29
End-of-file marker—154, 155, 156
End-of-line
character—47, 154, 156
condition—158
marker—153, 154, 155, 156, 158
Ending a procedure or function—126
ENTER-11, 28,32
EOF-73, 156
EOLN-73, 156
Equalto—52, 55,57, 58
Equality—57
testing for—6:3
Error
codes—31
handling—30, 31
Errors—12
EXIT-30
Execution—11
errors—30
of a stored program—15
EXP-70
Exponent—39, 40, 75
Expression—36, 62

F
Factorial—147, 148
FALSE—42, 52,57,73
Field-width specification—74, 75,
76,78
File
declaration—154
handling—152
type—152
File-identifier—155, 156, 157
File-processing keywords— 154
FILLCHAR—144, 146, 147
Flow of control—82
FN—10
FOR—83, 85,89, 105,112,118
Form feed—160
Formal parameters—129

FORMAT-—153
Formatted data—74, 76
FORWARD-—143
FUNCTION—19
Function—64, 121, 122, 129
block—125
body—125
call—132, 143
declarations—=125
heading—125

G
Global—138
identifiers—132
GOTO—100, 101,126
GOTOXY-78
Greater than—52, 55, 57, 58
Greater than or equal—>52, 55, 57, 58

H

HALT-29, 30, 126, 158
High-level languages—17
Histogram—112

I
i(input/output check)—26, 27, 160
[dentifier—20, 131, 143
IF-91, 92, 93
Imperative—30, 64, 66
IN=53, 58
Indentation—23, 24
Index—103
Index type— 104
Indexing—41
Initializing
amass-storage medium—153
the Pascal system—10
INPUT-152, 157
Input—18
buffer—47, 48, 153
statements—44, 48, 152, 155, 156
INSERT—144, 145
Installing a cartridge—9
INTEGER—-38
Integer functions—64
Integer operators—50, 51
Integer-to-real conversion—39, 44
INTEGER type—38, 46, 103

175

R

it

e 1

=i

e

b T R S G

e

o e g A I SR TR e LT L

INTERACTIVE—152, 157
Interpreter—17, 24, 25, 103, 129, 136,
152, 156, 157

Interpreter options—25, 26, 27
Intrinsic procedures—144
/o

STATUS—160

display indicator—152
IORESULT—26, 27, 160, 161
Italics—21

K
KEYBOARD-—152, 158
Keywords—10, 20

L
LABEL—19, 100
Leading blanks—45
LENGTH—68
Length of strings—40, 41
Less than—52, 55, 57, 58
Lessthan or equal—52, 55, 57, 58
Lexicographical—56
Line
length—24
numbering—22
renumbering—23
LIST—10, 152
Listing a program—11
LN—70
LOCK—156
LOG-—70
Logical operators—50, 53, 56, 57, 58
Loop—82, 80
Loop control—85
Lowercase characters—20, 56

M

Magnitude—39, 45, 46
Mantissa—38, 75
Maximum field width—78
Maximum length—40, 153
MAXINT—21, 38
MEMAVAIL—E6, 68, 145
Memory functions—=65, 66
MOD-—51, 60
MOVELEFT-144, 146, 147
MOVERIGHT—144, 146, 147

176

Multi-type functions—73
Multiple-line statements—24
Multiple-statement lines—24

N
Nested

1IF—93

loops—89, 112
NEW—I11,15
NEW ALL—11, 15
NOT-58, 60
Not equal to—52, 55, 57, 58
Nullstring—41
NUM-—-22
Numeric constants—21
Numeric functions—64
Numerical accuracy —63

(4]
OoDD—-73
OLD-—15, 152
One-dimensional—105
Openinga file—154
Operator precedence—60
Operators—50
OR—58, 60, 95
ORD—69
Order of precedence—95
Ordinal—63, 97
OUTPUT—152
Output—18
buffer—153
statements--18, 27, 28, 1562
Overlay—10

P

PACKED ARRAY OF CHAR—115
PACKED ARRAYS—115
PAGE—160

Page advance—160
Parameters—129, 135, 136, 138, 143
Parentheses—44, 61, 62

Pascal System Initialized—10, 11
Pass by reference—136
Peripheral device—152, 153
POS—68

Positioning the cursor—78
Precedence, operator—60

Procedure—12
block—122,
body—122
call—123, 1&
declarations
heading—12

PRED--73

PROCEDURE—

PROGRAM—23

Program
block—18, 1!
body—19, 12
divisions of -
execution—|
heading—18
identifier—1
lines—12, 22
storage—12

Prompts—49
PROTECTED -1
Punctuation—2
PURGE—156
PWROFTEN—7(

R
Ranking functio
READ—44,47.4
READLN-—44, 4
RUN command -
Real
functions—6¢
numbers—2]
operators—5i
REAL type—39,
Record—153
Record length—t
Recursion—147
Reference—138
Relational operai
57,117
Renumbering pr«
REPEAT—83, 86
Repetition staten
Reposition afile-
Reserved symbol:
Reserved words-
RESET—154, 155
REWRITE—154,

i-type functions—73
iple-line statements—24
iple-statement lines—24

ed

—g3

wps—89, 112
I—11,15
TALL—11,15

—58, 60

»qual to—52, 55, 57, 58
string—41

1-22

eric constants—21
eric functions—64
erical accuracy—63

—73

—15,152
dimensional—105
1ing a file—154

-ator precedence—60
ators—>50

58, 60, 95

—69

'rof precedence—95
nal—63, 97
PUT—-152

mt—18

uffer—153
atements—18, 27, 28, 152
lay—10

KED ARRAYOF CHAR-115
KED ARRAYS—115
E—160
advance—160
meters—129, 135, 136, 138, 143
ntheses—44, 61, 62
al System Initialized—10, 11
by reference—136
cheral device—152, 153

68
joning the cursor—78
edence, operator—60

Procedure—121, 122, 129
block—122, 143
body—122
call-123, 132, 143
declarations—122, 123
heading—122, 123

PRED—-73

PROCEDURE-19

PROGRAM-—-23

Program
block—18, 19, 121
body—19, 121, 123, 129
divisions of — 18
execution—15, 123
heading—18
identifier—18
lines—12, 22
storage—12

Prompts—49

PROTECTED—15

Punctuation—24
PURGE—156
PWROFTEN—-70

R
Ranking functions—64, 69
READ—44,47, 48, 153, 157
READLN—44, 47,48, 153, 157
RUN command—11, 32
Real
functions—69
numbers—21
operators—53
REAL type--39, 46
Record—153
Record length—153
Recursion—147
Reference—138
Relational operators—50, 52, 54, 55, 56,
57,117
Remmbering program lines—23
REPEAT—83, 86, 87, 88, 149
Repetition statements—82
Reposition a file—155

Reserved symbols—21, 22
Reserved words—20
RESET-154, 155
REWRITE—154, 155

Right-justified—75
ROUND—64

Rounding values—75, 76
Row—78

RUN—-10

run ‘‘pascal’’ —10
Runninga program—11, 15

S
SAVE—15, 152
SCAN—66
Scientific notation—39, 45, 46, 74
Semicolon—24, 84, 91, 123, 125
Sequential access—153
Set membership—52
SIN-70
SIZEOF—66
SQR—64, 70
SQRT-—-70
Statements—18, 19
Statements on multiple lines—24
Stepwise refinement--17, 12]
STR—144, 145
STRING-—37, 46, 115
String
constant—21
functions—64, 68, 72
operators—>56
procedures—144
STRING type—40
Structured programming—17, 101
Subscript—103, 104
SuUCC-73
Syntax, Pascal—20
Syntax errors—17

T
Terminating program execution—29

Termination of recursive routines— 147

Terms—62

TEXTfile—154, 157
Three-dimensional arrays—112, 118
TO—84, 86

Top-down design—17, 121
TRUE-42,52,57, 73

TRUNC—64

Truncation—63
Two-character symbols—21, 22

Two-dimensionat arrays—109, 118
TYPE declarations—19, 74, 107, 109

U
UCSD Pascal—7
Unary operators—>50, 54
UNBREAK—-33
Unconditional branch statements—82,
100
Unformatted data—74
UNTIL—86
Uppercase characters—20, 56
User-defined
functions—135
identifiers—20
procedures—135
type—74

Vv

Value parameter— 136, 138

VAR declaration—37, 74, 107, 109, 129

VAR parameter—129, 132, 136, 137,
138

Variable declarations—237

Variables—36

VERIFY—15

w

w(wait)—26, 27
Wait—26, 27
Warnings—31
WHILE—83, 87, 88
Width—75
WRITE—28, 153
WRITELN—28, 76, 153
Writing a program—11

\:E_'

TEXAS INSTRLU

1 ™ R

