

RAG SOFTWARERAG SOFTWARERAG SOFTWARERAG SOFTWARE

AEMS MACRO ASSEMBLERAEMS MACRO ASSEMBLERAEMS MACRO ASSEMBLERAEMS MACRO ASSEMBLER

ASSEMBLER LANGUAGE REFERENCEASSEMBLER LANGUAGE REFERENCEASSEMBLER LANGUAGE REFERENCEASSEMBLER LANGUAGE REFERENCE

 ==== ==== ==== ====
 ======== Asgard Macro Assembler ======== Asgard Macro Assembler ======== Asgard Macro Assembler ======== Asgard Macro Assembler
 ========== Expanded Version 1.1 ========== Expanded Version 1.1 ========== Expanded Version 1.1 ========== Expanded Version 1.1
 == AEMS == Memory R. A. Green == AEMS == Memory R. A. Green == AEMS == Memory R. A. Green == AEMS == Memory R. A. Green
 ========== System ========== System ========== System ========== System
 ======== ======== ======== ========
 ==== ==== ==== ====

CONTENTSCONTENTSCONTENTSCONTENTS

COMPATIBILITY 1
 Unsupported Features 1
 Extensions 1
ELEMENTS OF THE LANGUAGE 2
 Assembler Statements 2
 Assembler Symbols 3
 Macro Symbol Substring Notation . 4
 Macro Definitions 5
 The Location Counter 5
 Expressions 6
 Constants 7
 Definition of Terms 7
ASSEMBLER DIRECTIVES 9
ORDINARY STATEMENTS 16
MACRO DIRECTIVES 36

This manual is a reference for the language supported by the AEMS
Macro Assembler. The manual and the AEMS Macro Assembler program
are copyright (c) 1993 by RAG SOFTWARE.

April 1993

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 1

COMPATIBILITYCOMPATIBILITYCOMPATIBILITYCOMPATIBILITY

The AEMS Macro Assembler, with the exceptions noted below, is
compatible with the Assembler Language described in the TI
Editor/Assembler manual for the TI 99/4A. It is also upward
compatible with the RAG Software TI 99/4A Macro Assembler.

Unsupported FeaturesUnsupported FeaturesUnsupported FeaturesUnsupported Features

The following Instructions are not assembled: CKON, CKOF, IDLE,
LREX, RSET.

The following Assembler Directives are not supported: CEND, CSEG,
DEND, DSEG, DXOP, LOAD, PEND, PSEG, SREF.

The DORG directive is supported only with an absolute expression
as the operand.

ExtensionsExtensionsExtensionsExtensions

The AEMS Macro Assembler has several extensions to the TI
Assembler Language and syntax.

First, the macro facility is a major extension. The macro facility
includes the ability to define new instruction operation codes as
well as define macro instructions.

Second, six new assembler directives: EQUV, OBJREC, FLOAT, COMMON,
PNUM and STRI have been added to the language.

Third, a quoted string may use either single or double quotes as
the string delimiter. In either case, if the delimiter is to
occur within the string it must be represented by a pair. A
string may also specified as a sequence of hexadecimal digits
preceded by the ">" usually used to indicate hex constants.

Fourth, COPY statements may use an asterisk as the device name or
as the disk number. This is used to tell the assembler that the
copy file is on the same device/directory or the same disk number
as the source file. For example:

COPY 'DSK*.PARTB'
COPY "*.PARTC"

Both are valid copy statements indicating that the file PARTB is
on the same disk number as the source file and that PARTC is on
the same device/directory as the source file.

Fifth, the characters, number sign (#), dollar sign ($), percent
sign (%) and underscore (_) may be used as the second or following
characters of assembler symbols.

Sixth, complex relocatable address values are allowed. A complex
relocatable value is a reference to a COMMON defined symbol or to
a REF symbol plus an offset.

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 2

ELEMENTS OF THE LANGELEMENTS OF THE LANGELEMENTS OF THE LANGELEMENTS OF THE LANGUAGEUAGEUAGEUAGE

In order to understand and use the assembler language there are a
number of definitions and conventions that must be understood.

Assembler StatementsAssembler StatementsAssembler StatementsAssembler Statements

Each line of Assembler code is called a statement. There are five
types of statements, each of which is defined below.

COMMENT -- these statements provide notes for the person reading
the code. The assembler ignores comments except for printing them
in the listing. Comment statements are identified by an asterisk
in position one of the statement.

ASSEMBLER DIRECTIVES -- these statements give the assembler
directions on how you want your code assembled. Assembler
directive statements have the following format.

 [label] operation operands [comment].

Each of the four fields in the statement are separated by one or
more blanks or spaces. The label and comment fields are always
optional. The label if present must begin in position one of the
statement. If no label is coded, at least one blank must precede
the operation field. Some assembler directives have no operands in
which case the comment field immediately follows the operation
field. Individual operands within the operands field are separated
from each other by commas. No blanks must occur within the operand
field unless the operand is enclosed in quotes. The operation
field names the assembler directive. All the assembler directives
are described later.

MACRO DIRECTIVES -- these statements give the assembler directions
on how to interpret and assemble your macros. Macro directives
occur only within a "macro definition". NOTE that the $OPCODE
directive is described as a macro directive although strictly it
is not. Macro directives have the format shown below.

 $operation operands [comment]

Each of the three fields in the statement are separated by one or
more blanks or spaces. Macro directives are recognized by the
dollar sign coded in position one of the statement. The comment
field is always optional. Some macro directives have no operands,
in which case the comment field immediately follows the operation
field. Individual operands within the operands field are
separated from each other by commas. No blanks must occur within
the operand field unless the operand is enclosed in quotes. The
operation field names the macro directive. All the macro
directives are described later.

ORDINARY STATEMENTS -- these statements represent machine
instructions which are to be assembled. The bulk of your code will

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 3

be ordinary statements. Ordinary statements have the following
format.

 [label] operation operands [comment]

Each of the four fields in the statement are separated by one or
more blanks or spaces. The label and comment fields are always
optional. The label if present must begin in position one of the
statement. If no label is coded, at least one blank must precede
the operation field. Individual operands within the operands field
are separated from each other by commas. No blanks must occur
within the operand field unless the operand is enclosed in quotes.
The operation field names the machine instruction to be assembled.
All of the predefined machine instructions are described later.
Some machine instructions have no operands in which case the
comment field immediately follows the operation field. The $OPCODE
directive can be used to define new machine instructions.

MACRO STATEMENTS -- these statements cause a macro to be invoked.
Statements "generated" by a macro are assembled as though they
appeared in the source file. Macro statements look just like
ordinary statements as shown below.

 [label] operation operands [comment]

The operation field names the macro definition that is to be used.
The interpretation of the label field and the operands field is
completely controlled by the macro definition.

Assembler SymbolsAssembler SymbolsAssembler SymbolsAssembler Symbols

There are two kinds of assembler symbols.

ORDINARY SYMBOLS -- these symbols represent memory addresses or
data values. Ordinary symbols are defined by appearing in the
label field of an ordinary statement, an assembler directive
statement or in the operand field of a REF directive. The value of
an ordinary symbol is a 16-bit unsigned number. Unless otherwise
specified, the value assigned to a symbol is the current location
counter at which the statement is assembled.

Ordinary symbols are 1 to 6 characters in length. The first
character must be a letter, "A" to "Z". The second and following
characters can be a letter (A-Z), a number (0-9) or one of the
characters "$", "#", "%" or "_".

MACRO SYMBOLS -- these are special predefined symbols used within
a macro definition. The value of a macro symbol is a character
string with a length of 0 to 60 characters. The names of the macro
symbols are of the form &tn. Where the ampersand identifies a
macro symbol. If you wish to code an ampersand that is not part
of a macro symbol name within a macro definition you must code a
pair of ampersands. The "t" in the macro symbol name is the type
of symbol. There are four types of macro symbols: "P" for
Parameter macro symbol, "L" for Local macro symbol, "G" for Global

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 4

macro symbol and "S" for System macro symbol. The "n" in the
macro symbol name is a single digit from 0 to 9. Thus each type
has ten different symbols and there are 40 macro symbols in total.

Parameter macro symbols have as their values the label field and
the operands of the macro statement that invoked the macro. &P0
contains the label field, &P1 contains the first operand, &P2
contains the second operand, and so on. A macro statement can
therefore have a maximum of 9 operands.

System macro symbols have values assigned by the assembler. These
are:

&S0 = value from the "Options" field.
&S1 = the number of macros processed so far in the assembly.
 This value is useful for generating unique names within
 macros. The number is represented as a five character
 string with leading zeros.
&S2 = the number of operands on the macro statement. The
 number is represented as a five character string with
 leading zeros.
&S3 = a single character, "1" indicating the first pass of
 the assembler and "2" indicating the second pass of the
 assembler.
&S4 = the information entered in the "Date" field.
&S5 = the source file name.

The remainder of the system macro symbols are currently not used
and have a null value.

Local macro symbols have values set via the $SET macro directive.
All local macro symbols are reset to null at the beginning of each
macro invocation.

Global macro symbols have values set via the $SET macro directive.
All global macro symbols are reset to null at the beginning of
each pass of the assembler. Global symbols can be used to
communicate from one macro invocation to another within the same
assembler pass.

Macro Symbol Substring NotationMacro Symbol Substring NotationMacro Symbol Substring NotationMacro Symbol Substring Notation

Substrings of the macro symbol values are allowed. The general
form for a macro symbol with substring notation is: &tn(s.l).
Where "s" is the starting position for the substring and "l" is
the length of the substring. Note that "s" and "l" are separated
by a period not a comma.

As is usual for substring notation, if "s" specifies a position
past the end of the string a null string will result. Also, if
"l" specifies a length greater than the remainder of the string
only the remainder is used. The "l" and the period are optional.
If only "s" is specified then the remainder of the string is used.

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 5

Assume that the macro symbol &L2 has the value
'ABCDEFGHIJKLMNOPQRSTUVWXYZ', then:

&L2(25) has the value 'YZ'
&L2(1.4) has the value 'ABCD'
&L2(24.8) has the value 'XYZ'
&L2(27.8) has the value ''

There are cases where you may want a macro symbol to be followed
by a bracketed expression that is not substring notation (i.e. in
an indexed symbolic memory reference). This can be done by
following the macro symbol with a period such as: &L2.(2). In fact
any period following a macro symbol will be considered part of the
macro symbol name and will be removed when the value of the macro
symbol is substituted.

Macro DefinitionsMacro DefinitionsMacro DefinitionsMacro Definitions

The macro facility gives you a shorthand way of coding assembler
language programs. It can also be thought of as providing you
with a slightly higher level of language (i.e. a language level
somewhere between pure assembler and, say, BASIC). Usually, coding
a single macro statement will cause several ordinary assembler
statements to be generated and assembled into your program.

If you find yourself repeatedly coding the same group or sequence
of statements with only slight differences, these could be coded
within a macro definition and then replaced in your source
programs by a single macro statement. This reduction in the number
of statements in your program has several advantages. The source
program is smaller thus easier to read and understand. Once the
code generated by the macro is debugged then you need not debug
each occurrence of it in your program. Less statements means less
typing and less errors.

Macro definitions can be placed in the macro file or can be placed
in the source file. Macro definitions in the source file must
precede the first use of the macro.

A macro definition consists of macro directives, ordinary
assembler statements or assembler directives. No macro statements
may occur within a macro definition. During macro processing, the
macro directives are executed by the assembler. Ordinary assembler
statements and assembler directives are scanned and any macro
symbols are replaced by their values. After replacement of macro
symbols, the ordinary statements and assembler directives are
assembled just as though they were read from the source file.

A macro definition must begin with the $MACRO macro directive and
end with the $END macro directive.

The Location CounterThe Location CounterThe Location CounterThe Location Counter

The Assembler maintains a "location counter" (similar in purpose
to the computer's Program Counter) as it assembles code or data.

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 6

This location counter is the "address" at which the code or data
will be loaded. The location counter value may be either
relocatable or absolute. If absolute, then the location counter is
the exact memory address at which the code or data must be loaded.
If relocatable, then the location counter is a "relative address"
that is, relative to the address at which loading starts.

The Assembler begins with its location counter at zero and in
relocatable mode. The AORG, RORG, DORG and COMMON Assembler
Directives can be used to assign values to the Assembler's
location counter. As symbols are encountered in the source code,
they are assigned values usually based on the location counter.
Along with the value assigned, each symbol has an attribute of
"absolute" or "relocatable" depending upon how the symbol was
assigned a value.

The value of the Assembler's location counter can be referenced by
the special symbol "$".

ExpressionsExpressionsExpressionsExpressions

The Assembler allows the use of an arithmetic expression for most
operands ("string" operands are an exception). These expressions
can contain ordinary symbols, REF symbols, constants and the
operators: "+", "-", "*" and "/". Expressions are evaluated in
strict left to right order with no operator precedence rules. For
example, "2+3*5" evaluates to 25 not to 17 as would a BASIC
expression. Parentheses are not allowed in Assembler expressions.

All expressions are evaluated using 16-bit unsigned arithmetic.

When ordinary symbols are used in expressions it is important to
keep in mind the relocatability attribute of the symbols. The
relocatability rules for expression evaluation are:

relocatable + relocatable is not allowed
relocatable + absolute is relocatable
absolute + relocatable is relocatable
absolute + absolute is absolute

relocatable - relocatable is absolute
relocatable - absolute is relocatable
absolute - relocatable is relocatable
absolute - absolute is absolute

relocatable * relocatable is not allowed
relocatable * absolute is not allowed
absolute * relocatable is not allowed
absolute * absolute is absolute

relocatable / relocatable is not allowed
relocatable / absolute is not allowed
absolute / relocatable is not allowed
absolute / absolute is absolute

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 7

Note that "constants" are always absolute, and that byte
expressions must always be absolute.

Expressions containing REF symbols (which are treated as
relocatable symbols) can only have the forms:

relocatable + absolute is complex relocatable
absolute + relocatable is complex relocatable

The "absolute - relocatable" rule above can give rise to a problem
which the Assembler does not detect. If you coded a statement
like:

 DATA -X

where X is relocatable, the result (i.e. 0-X) will not be as
expected. When assembled, the negative value of X will be
assembled into the data word, but when the code is loaded, since
the value is relocatable, it will be relocated by the loader.
That is, the data value will be:

 -X + Relocation factor

which is not the negative of the address of X.

ConstantsConstantsConstantsConstants

The Assembler allows three types of constants. Decimal integers
are written in the usual form. Hexadecimal numbers are identified
by a leading ">" followed by hex digits 0-9 and A-F. Character
constants are identified by enclosing the characters in single
quotes "'". The character "'" in a character constant is
represented by two single quote marks. Note that character
constants can be used in expressions as numbers. The following
DATA statements demonstrate the various types of constants.

DATA 10 DECIMAL 10
DATA 10*2 DECIMAL 20
DATA >F HEXADECIMAL (DECIMAL VALUE 15)
DATA >000F SAME AS ABOVE
DATA 'A' CHARACTER (DECIMAL VALUE 65)
DATA 'A'+1 CHAR (DECIMAL VALUE 65+1=66)

Note that character constants are not the same as strings which
are defined later.

Definition of TermsDefinition of TermsDefinition of TermsDefinition of Terms

The following terms are used in the descriptions of the Assembler
statements in later sections of this manual.

VALUE - means a data value or an expression which evaluates to a
data value. The value may be absolute or relocatable.

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 8

LABEL - is an ordinary symbol in the label field of a statement.
Labels begin in position one of the statement.

NAME - is an ordinary symbol used in an operand field.

DESTINATION - is the result field. For example in A=B, A is the
destination. Allowable ways of coding the destination operand is
specified in the description of the statement.

SOURCE - is the source field. For example in A=B, B is the source
field. Allowable ways of coding the source operand is specified in
the description of the statement.

GENERAL ADDRESS - is any one of the forms of addressing allowed by
the CPU. These are:

@symbol - Symbolic memory direct
@symbol(Rn) - Indexed symbolic memory
Rn - Register direct
*Rn - Register indirect
*Rn+ - Register indirect with auto-increment

COUNT - is an absolute value such as the count of the number of
bit positions to be shifted. The range of valid count values is
specified in the description of the statement.

DISPLACEMENT - is an absolute value such as the displacement of a
CRU bit address from the base CRU address. The range of valid
displacement values is specified in the description of the
statement.

STRING - is a string of characters. Strings can be coded in one of
three ways. First, the characters can be enclosed in single
quotation marks (a single quote within the string is represented
by two single quotes). Second, the characters can be enclose in
double quote marks (a double quote within the string is
represented by two double quotes). Third, by a sequence of
hexadecimal digits preceded by the hex indicator, ">". The
following three strings are all identical:

'ASDF'
"ASDF"
>41534446

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 9

ASSEMBLER DIRECTIVESASSEMBLER DIRECTIVESASSEMBLER DIRECTIVESASSEMBLER DIRECTIVES

AORG AORG AORG AORG ---- Absolute Origin Absolute Origin Absolute Origin Absolute Origin

 [label] AORG value [comments]

The AORG directive assigns an absolute value to the assembler's
location counter. All code assembled after the AORG will be in
absolute form. The "label" if coded is assigned the new value of
the location counter. The "value" expression must contain only
previously defined symbols, and the expression must result in an
absolute value.
Examples:

NEWORG AORG >F000 ABSOLUTE CODE AT >F000
 AORG NEWORG+>400 ABSOLUTE CODE AT >F400

BES BES BES BES ---- Block Ending with Symbol Block Ending with Symbol Block Ending with Symbol Block Ending with Symbol

 [label] BES value [comment]

The BES directive reserves a block of storage (i.e. a program work
area). The "label" if coded is assigned the address of the byte
immediately following the reserved block of storage. The number of
bytes reserved is specified by the "value" operand. The "value"
expression must contain only previously defined symbols, and must
be an absolute value.
Examples:

WORK BES 10 WORK AREA OF 10 BYTES
SIZE EQU 25
 BES SIZE*2 RESERVE 50 BYTES

BSS BSS BSS BSS ---- Block Starting with Symbol Block Starting with Symbol Block Starting with Symbol Block Starting with Symbol

 [label] BSS value [comment]

The BSS directive reserves a block of storage (i.e. a program work
area). The "label" if coded is assigned the address of the first
byte of the reserved block of storage. The number of bytes
reserved is specified by the "value" operand. The "value"
expression must contain only previously defined symbols, and must
be an absolute value.
Examples:

WORK BSS 10 WORK AREA OF 10 BYTES
SIZE EQU 25
 BSS SIZE*2 RESERVE 50 BYTES

BYTE BYTE BYTE BYTE ---- Define a Data Byte Define a Data Byte Define a Data Byte Define a Data Byte

 [label] BYTE value,value,... [comment]

The BYTE directive causes constant data values to be assembled
into bytes. The "value" expression must be absolute. A number of

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 10

byte values can be specified on a single statement by separating
the value expressions by commas.
Examples:

CON1 BYTE 10 ONE BYTE VALUE OF 10
CON2 BYTE >20,'A',12 THREE CONSTANTS
SIZE EQU 25.
NUMBER BYTE SIZE*2

COMMON COMMON COMMON COMMON ---- Define Relocatable Common Data Area Define Relocatable Common Data Area Define Relocatable Common Data Area Define Relocatable Common Data Area

 label COMMON [comment]

The COMMON directive begins the definition of a relocatable common
data area. There must be a "label" which is the name of the common
area. There is no operands field.

The location counter is set to zero (relocatable) by the COMMON
directive. No object code or data is produced for a common area.
The assembler operates normally, defining any symbols and
producing a listing, except that no object code is produced. Only
the name and the size of the common area is output to the object
file. The linker or loader must assign the address of the common
area.

The linker or loader must inspect all common definitions and
select the largest size specified for each name. All object files
in a program which define a common name will refer to the same
area. If a common name is also defined by a DEF in some object
file, then that DEF value will be used to resolve all common
references.

The common area or block is terminated by another block definition
via the AORG, DORG, RORG, or COMMON directives, or by the END
directive.

The common name is treated by the assembler like a REF name. A
common block definition is like a relocatable DORG. Any reference
in the program to a symbol defined in a common block results in a
"complex relocatable value" being produced. That is, a reference
to a common defined name is treated as a reference to the common
name PLUS an offset.
Example:

 WORK COMMON Define common work area
 X BSS 10
 Y BSS 10
 Z BSS 10
 TABLE COMMON Define common table
 THEAD BSS 2
 BSS 100
 TEND BSS 2

Defines two common areas: WORK of length 30 bytes and TABLE of
length 104 bytes.

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 11

COPY COPY COPY COPY ---- Copy Source from File Copy Source from File Copy Source from File Copy Source from File

 [label] COPY string [comment]

The COPY directive causes the file named in the operand field to
be read as part of the source file. The name of the file to be
read is specified in the usual way in the "string" operand. Note
that if the forth character of the file name is an asterisk then
the disk number of the source file is substituted. If the entire
device part of the file name is specified as a asterisk then the
device/directory part of the source file name is substituted. A
COPY directive may only occur within the source file and not
within a "copy" file.
Examples:

 COPY "DSK1.SRC2" INCLUDE 2ND PART OF SOURCE
X COPY 'DSK*.SRC3' SRC3 FILE FROM SOURCE DISK
 COPY '*.SRC3' SRC3 FILE FROM SOURCE DISK

DATA DATA DATA DATA ---- Define a Data Word Define a Data Word Define a Data Word Define a Data Word

 [label] DATA value,value,... [comment]

Te DATA directive causes constant data values to be assembled into
words. The "value" expression may be absolute or relocatable. A
number of word values can be specified on a single statement by
separating the value expressions by commas.
Examples:

CON1 DATA 10 ONE WORD VALUE OF 10
CON2 DATA >20,'AB',12 THREE CONSTANTS
SIZE EQU 25
NUMBER DATA SIZE*2 WORD VALUE OF 50

DEF DEF DEF DEF ---- Define External Name Define External Name Define External Name Define External Name

 [label] DEF name,name,... [comment]

The DEF directive specifies that the names in the operand field
are "external", that is, they can be referenced by other
separately assembled programs. The names listed in the operand
field must be defined elsewhere in the program being assembled.
Examples:

 DEF SUB1,SUB2 DEFINE SUBROUTINE ENTRIES

DORG DORG DORG DORG ---- Dummy Origin Dummy Origin Dummy Origin Dummy Origin

 [label] DORG value [comment]

The DORG directive assigns an absolute value to the assembler's
location counter. It also directs the assembler not to produce
object code for the following code. The assembler operates

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 12

normally, defining any symbols which occur and producing a listing
if required, except that no object code is written to the object
file. The assembler will resume normal operation if an AORG or
RORG directive is encountered after the DORG.

The value expression must be absolute. If a label is coded in the
label field it will be assigned the new location counter value.
Example:

A DORG 100 BEGIN DUMMY CODE
 DORG A+1000
 AORG >F000 RESUME WITH ABS CODE

END END END END ---- End of Assembly End of Assembly End of Assembly End of Assembly

 [label] END [name] [comment]

The END directive is the last statement in the program being
assembled. A name is specified in the operand field to indicate to
the loader or linker where execution of the program is to begin.
Example:

 END

EQU EQU EQU EQU ---- Set Symbol Equal to Value Set Symbol Equal to Value Set Symbol Equal to Value Set Symbol Equal to Value

 [label] EQU value [comment]

The EQU directive is used to assign a value directly to a symbol.
The symbol in the label field is assigned the value and
relocatability of the expression in the operand field.
Examples:

TEN EQU 10 SYMBOLIC VALUE 10
TWENTY EQU TEN*2
X BSS 2
Y EQU X+1 2ND BYTE OF X

EQUV EQUV EQUV EQUV ---- Set Symbol to New Value Set Symbol to New Value Set Symbol to New Value Set Symbol to New Value

 [label] EQUV value [comment]

The EQUV directive is used to assign or reassign a value directly
to a symbol. The symbol in the label field is assigned the value
and relocatability of the expression in the operand field. Note
that EQUV is the only way the value of an ordinary symbol can be
changed during an assembly. This directive should be used with
care as it allows the value of any symbol to be changed.
Examples:

TEN EQUV 10 SYMBOLIC VALUE 10.
TWENTY EQUV TEN*2
TEN EQUV 15 CHANGE VALUE OF TEN
Y EQU TEN+1 SYMBOLIC VALUE 16

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 13

EVEN EVEN EVEN EVEN ---- Location Counter to Even Address Location Counter to Even Address Location Counter to Even Address Location Counter to Even Address

 [label] EVEN [comment]

The EVEN directive aligns the location counter to a word address
(i.e. and even address). If the location counter is odd then it
is adjusted up to the next even address. Note that all machine
instructions and the DATA directive also align the location
counter to a word address. The EVEN directive has no operands.
Example:

 XXX EVEN ALIGN TO WORD BOUNDARY

FLOAT FLOAT FLOAT FLOAT ---- Define Floating Point Value Define Floating Point Value Define Floating Point Value Define Floating Point Value

 [label] FLOAT f1,f2,... [comment]

The FLOAT directive causes floating point data values to be
assembled into the program. The Assembler uses the GPL routines to
convert the floating point numbers so that any form acceptable to
TI BASIC can be used. A number of floating point numbers can be
specified on a single FLOAT statement, separated by commas.

The location counter is aligned on a word boundary prior to
assembling the numbers. Each floating point number occupies 8
bytes of memory.
Examples:

 X FLOAT 1.0,1E3 1 and 1000
 Y FLOAT -2.8E-2

IDT IDT IDT IDT ---- Identify Object Identify Object Identify Object Identify Object

 [label] IDT string [comment]

The IDT directive causes the 1 to 8 character string to be used in
the identification field in the object code. If more than one IDT
directive is used, the last string specified is used.
Example:

 IDT 'JONES'

LIST LIST LIST LIST ---- Resume Assembler Listing Resume Assembler Listing Resume Assembler Listing Resume Assembler Listing

 [label] LIST [comment]

The LIST directive causes the object listing to be resumed after
it has been halted by an UNL directive. The LIST directive has no
operands.
Example:

 LIST

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 14

OBJREC OBJREC OBJREC OBJREC ---- Write Object Record Write Object Record Write Object Record Write Object Record

 {BEFORE}
[label] OBJREC {AFTER },string [comment]
 {NOW }

The OBJREC directive allows arbitrary records to be written into
the object file. One important use for this directive could be to
add control statements to the object file for use by a linker.

The first operand is a coded value which tells the assembler where
in the object file the record is to be written: BEFORE the first
object record, AFTER the last object record, or NOW at the current
position in the object file.

The OBJREC directives can be placed anywhere in the source
program. In particular, the BEFORE text is collected during pass 1
and written, in order, before pass 2 begins, and the AFTER text is
collected during pass 2 and written, in order, at the end of pass
2. The NOW text is written as encountered during pass 2 after
writing any partial object record that may exist.

The "string" is the text to be placed in the object record. There
is a limit to the amount of text that can be saved for either
BEFORE or AFTER.
Examples:

 OBJREC BEFORE,'LOAD DSK*.SUBS'
 OBJREC AFTER,"ENTRY MAIN"

PAGE PAGE PAGE PAGE ---- Start New Listing Page Start New Listing Page Start New Listing Page Start New Listing Page

 [label] PAGE [comment]

The PAGE directive causes the Assembler to start a new page in the
listing file.
Example:

 PAGE START NEW PAGE

REF REF REF REF ---- External Reference External Reference External Reference External Reference

 [label] REF name,name,... [comment]

The REF directive defines the names in the operand field to be
references to symbols defined in a separately assembled program.
Note that external references may not be used in expressions.
Example:

REF SUB1,SUB2 DEFINE SUB1 AND SUB2
BLWP @SUB2 CALL SUBROUTINE 2

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 15

RORG RORG RORG RORG ---- Relocatable Origin Relocatable Origin Relocatable Origin Relocatable Origin

 [label] RORG [value] [comment]

The RORG directive assigns a new relocatable value to the
assembler's location counter. Even if the value expression is an
absolute value, the location counter will be made relocatable. If
a label is coded in the label field it will be assigned the new
location counter value. If no operand is coded then the location
counter is set to the highest relocatable value that has been
encountered in the assembly.
Example:

A RORG 100
 RORG A+1000
 AORG >F000 ABSOLUTE CODE
* RESUME RELOCATABLE CODE
 RORG

STRI STRI STRI STRI ---- Define ASCII String Constant Define ASCII String Constant Define ASCII String Constant Define ASCII String Constant

 [label] STRI string [comment]

The STRI directive assembles a string constant into the program. A
string constant has the length of the text as the first byte.
This is similar to the TEXT directive except for the leading
length byte.
Examples:

S1 STRI 'STRING CONSTANT'
S2 STRI "ANOTHER STRING"
S3 STRI >52414720534F465457415245

TEXT TEXT TEXT TEXT ---- Define ASCII Text Constant Define ASCII Text Constant Define ASCII Text Constant Define ASCII Text Constant

 [label] TEXT string [comment]

The TEXT directive assembles an ASCII character constant into the
program.
Examples:

T1 TEXT 'ASCII CHARACTERS'
T2 TEXT "ARE ASSEMBLED INTO"
T3 TEXT >5448452050524F47414D

TITL TITL TITL TITL ---- Define Listing Title Define Listing Title Define Listing Title Define Listing Title

 [label] TITL string [comment]

The TITL directive provides up to 25 characters to be printed in
the listing page heading. If TITL is the first statement in the
source file then the string will be printed on the first page of
the listing. The title can be changed during assembly, the new
title string will appear on the next page printed.
Example:

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 16

 TITL 'NEW PAGE HEADING'

UNL UNL UNL UNL ---- Stop Assembl Stop Assembl Stop Assembl Stop Assembler Listinger Listinger Listinger Listing

 [label] UNL [comment]

The UNL directive stops the listing of source and object. The
listing can be resumed by the LIST directive.
Example:

 UNL

ORDINARY STATEMENTSORDINARY STATEMENTSORDINARY STATEMENTSORDINARY STATEMENTS

A A A A ---- Add Word Add Word Add Word Add Word

 [label] A source,destination [comment]

The source operand value is added to the destination operand
value, the sum replacing the destination operand value. Both
operands are coded as general addresses. The two 16-bit words may
represent either signed or unsigned numbers. The resultant sum is
compared to zero to set the L>, A> and EQ status bits. The CA
status bit is set when a carry from bit 0 occurs (i.e. unsigned
overflow). The OV status bit is set when signed overflow occurs.
Examples:

X A @A,@B B = A + B
 A @A,R1 REG 1 = A + R1
 A R0,*R1 ADD R0 TO WORD -> TO BY R1
 A *R0+,*R1+
A DATA 10
B DATA 20

AB AB AB AB ---- Add Byte Add Byte Add Byte Add Byte

 [label] AB source,destination [comment]

The source operand value is added to the destination operand
value, the sum replacing the destination operand value. Both
operands are coded as general addresses. The two 8-bit bytes may
represent either signed or unsigned numbers. The resultant sum is
compared to zero to set the L>, A> and EQ status bits. The CA
status bit is set when a carry from bit 0 occurs (i.e. unsigned
overflow). The OV status bit is set when signed overflow occurs.
The OP status bit is set when the number of bits in the sum is
odd.
Examples:

X AB @A,@B B = A + B
 AB @A,R1 REG 1 = A + R1
Y AB R0,*R1 ADD R0 TO BYTE -> TO BY R1
 AB *R0+,*R1+
A BYTE 10
B BYTE 20

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 17

ABS ABS ABS ABS ---- Absolute Value Absolute Value Absolute Value Absolute Value

 [label] ABS destination [comment]

The destination operand value, which is considered to be a signed
number, is made positive. If the destination value is already
positive, no change takes place. The original value is compared to
zero to set the L>, A> and EQ status bits. NOTE: the original
value is used. The OV status bit will be set if the original value
is >8000.
Examples:

X ABS @A ABSOLUTE VALUE OF A
 ABS R1 ABSOLUTE VALUE OF REG 1
Y ABS *R1 ABS OF WORD POINTED TO BY R1
 ABS *R0+
A BSS 2

AI AI AI AI ---- Add Immediate Add Immediate Add Immediate Add Immediate

 [label] AI destination,value [comment].

The 16-bit immediate data value is added to the destination
operand value, the sum replacing the destination operand value.
The destination operand must be specified as a workspace register.
The two 16-bit words may represent either signed or unsigned
numbers. The resultant sum is compared to zero to set the L>, A>
and EQ status bits. The CA status bit is set when a carry from bit
0 occurs (i.e. unsigned overflow). The OV status bit is set when
signed overflow occurs.
Examples:

X AI R1,20 R1 = R1 + 20
 AI R0,-30 REG 0 = REG 0 - 30
 AI R15,A
A EQU 10

ANDI ANDI ANDI ANDI ---- And Immediate And Immediate And Immediate And Immediate

 [label] ANDI destination,value [comment]

The logical AND of the 16-bit immediate data value and the
destination operand value is performed. The result replaces the
destination operand value. The destination operand must be
specified as a workspace register. The result is compared to zero
to set the L>, A> and EQ status bits.
Examples:

X ANDI R1,>F000 ISOLATE 1ST NIBBLE OF R1
 ANDI R0,MASK
MASK EQU 000F

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 18

B B B B ---- Branch Branch Branch Branch

 [label] B destination [comment]

Branch to, or continue execution at, the destination address.
The destination is specified as a general address.
Examples:

X B @A CONTINUE AT LABEL A
 B *R1 CONTINUE AT ADDRESS IN REG 1
A EVEN

BL BL BL BL ---- Branch and Link Branch and Link Branch and Link Branch and Link

 [label] BL destination [comment]

Branch to, or continue execution at, the destination address
saving the current address in register 11. The destination is
specified as a general address. The program can continue execution
at the instruction following the BL by branching to the address
saved in register 11.
Examples:

X BL @A BRANCH AND LINK TO ROUTINE A
 BL R1 CALL ROUTINE AT ADDR IN R1
A EVEN

BLWP BLWP BLWP BLWP ---- Branch and Load Workspace Pointer Branch and Load Workspace Pointer Branch and Load Workspace Pointer Branch and Load Workspace Pointer

 [label] BLWP destination [comment]

The two words at the destination address are used to load the
Workspace Pointer and Program Counter, thus defining a new
register set and continuing execution at a new address. The old
workspace pointer is saved in register 13 of the new workspace.
The old program counter (the return address) is saved in register
14 of the new workspace. The old status register is saved in
register 15 of the new workspace. The destination is specified as
a general address. The program can restore the old workspace
pointer, the old status register, and can continue execution at
the instruction following the BLWP by using the RTWP instruction.
Examples:

X BLWP @A CALL SUBROUTINE A
 BLWP *R1 CALL SUBRTN AT ADDR IN R1
A DATA NEWWSP,NEWPC SUBROUTINE "A" BLWP VECTOR

CLR CLR CLR CLR ---- Clear Clear Clear Clear

 [label] CLR destination [comment]

The destination operand word is set to zero. The destination
operand is specified as a general address. No status bits are
affected by this instruction.
Examples:

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 19

X CLR @A ZERO VALUE IN A
 CLR R1 ZERO REGISTER 1
Y CLR *R1 ZERO WORD POINTED TO BY R1
 CLR *R0+
A BSS 2

C C C C ---- Compare Word Compare Word Compare Word Compare Word

 [label] C source,destination [comment]

The source operand value is compared to the destination operand
value. Both operands are coded as general addresses. Neither
operand is changed. The two 16-bit words may represent either
signed or unsigned numbers. The L>, A> and EQ status bits are set
to reflect the result of the compare.
Examples:

X C @A,@B COMPARE A TO B
 C @A,R1 COMPARE A TO VALUE IN R1
 C R0,*R1 COMP R0 TO WORD -> TO BY R1
 C *R0+,*R1+
A DATA 10
B DATA 20

CB CB CB CB ---- Compare Byte Compare Byte Compare Byte Compare Byte

 [label] CB source,destination [comment]

The source operand value is compared to the destination operand
value. Both operands are coded as general addresses. Neither
operand is changed. The two 8-bit bytes may represent either
signed or unsigned numbers. The L>, A> and EQ status bits are set
to reflect the result of the compare. The OP status bit is set
when the number of bits in the source operand is odd.
Examples:

X CB @A,@B COMPARE A TO B
 CB @A,R1 COMPARE A TO 1ST BYTE OF R1
Y CB R0,*R1 COMP R0 TO BYTE -> TO BY R1
 CB *R0+,*R1+
A BYTE 10
B BYTE 20

CI CI CI CI ---- Compare Immediate Compare Immediate Compare Immediate Compare Immediate

 [label] CI source,value [comment]

The 16-bit source value is compared to the immediate data value.
The source operand must be specified as a workspace register.
Neither operand is changed. The L>, A> and EQ status bits are set
to reflect the result of the compare.
Examples:

X CI R1,20 COMPARE VALUE IN R1 TO 20

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 20

 CI R0,-30 COMPARE VALUE IN R0 TO -30
 CI R15,A COMPARE VALUE IN R15 TO 10
 CI R15,A+25 COMPARE VALUE IN R15 TO 35
A EQU 10

COC COC COC COC ---- Compare Ones Corresponding Compare Ones Corresponding Compare Ones Corresponding Compare Ones Corresponding

 [label] COC source,destination [comment]

The 16-bit source value is compared to the 16-bit value in the
destination register. If all bits in the source value that are
ones are also ones in the destination then the EQ status is set,
otherwise the EQ status bit is reset. The source operand is
specified as a general address. The destination operand is
specified as a workspace register.

The COC instruction tests single or multiple bits in a workspace
register.
Examples:

X COC R1,R2 COMPARE ONE BITS R1 TO R2
 JEQ ON JUMP ALL BITS ON
 COC @Y,R3 TEST FOR ONE BITS IN R3
 JNE OFF JUMP BITS NOT ALL ON

CZC CZC CZC CZC ---- Compare Zeros Corresponding Compare Zeros Corresponding Compare Zeros Corresponding Compare Zeros Corresponding

 [label] CZC source,destination [comment]

The 16-bit source value is compared to the 16-bit value in the
destination register. If all bits in the source value that are
ones are zeros in the destination then the EQ status is set,
otherwise the EQ status bit is reset. The source operand is
specified as a general address. The destination operand is
specified as a workspace register.
Examples:

X CZC R1,R2 TEST FOR ZERO BITS IN R2
 JEQ ZEROS JUMP ALL BITS ZEROS
 CZC @Y,R3 COMPARE ONE BITS OF Y TO R3
 JNE MIXED JUMP SOME BITS NOT ZERO

DEC DEC DEC DEC ---- Decrement Decrement Decrement Decrement

 [label] DEC destination [comment]

The 16-bit destination operand value is decremented by one. The
resultant value is compared to zero to set the L>, A> and EQ
status bits. The CA status bit is set when a carry from bit 0
occurs (i.e. unsigned overflow). The OV status bit is set when
signed overflow occurs.
Examples:

X DEC @A A = A - 1
 DEC R1 SUBTRACT 1 FROM REG 1

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 21

Y DEC *R1 DECREMENT WORD AT ADDR IN R1
 DEC *R0+
A BSS 2

DECT DECT DECT DECT ---- Decrement by Two Decrement by Two Decrement by Two Decrement by Two

 [label] DECT destination [comment]

The 16-bit destination operand value is decremented by two. The
resultant value is compared to zero to set the L>, A> and EQ
status bits. The CA status bit is set when a carry from bit 0
occurs (i.e. unsigned overflow). The OV status bit is set when
signed overflow occurs.
Examples:

X DECT @A A = A - 2
 DECT R1 SUBTRACT 2 FROM REG 1
Y DECT *R1 WORD AT ADDR IN R1 LESS 2
 DECT *R0+
A BSS 2

DIV DIV DIV DIV ---- Divide Divide Divide Divide

 [label] DIV source,destination [comment]

The 32-bit destination operand value is divided by the 16-bit
source operand value using unsigned integer rules. The source
operand is specified as a general address. The destination operand
must be specified as a workspace register. The quotient and
remainder replace the 2-word destination. The quotient is placed
in the specified destination register, and the remainder is placed
in the specified register + 1. Note if the destination register
is specified as register 15, then the destination operand extends
into the word of memory following the workspace. The OV status
bit is set if the resultant quotient cannot be expressed in 16
bits.
Examples:

X DIV @A,R0 DIVIDE A INTO (R0,R1).
 DIV R1,R2 DIVIDE R1 INTO (R2,R3)
Y DIV *R1,R3 DIVIDE VALUE -> TO BY R1
* INTO (R3,R4)
 DIV *R0+,R8
A BSS 2

INC INC INC INC ---- Increment Increment Increment Increment

 [label] INC destination [comment]

The 16-bit destination operand value is incremented by one. The
resultant value is compared to zero to set the L>, A> and EQ
status bits. The CA status bit is set when a carry from bit 0
occurs (i.e. unsigned overflow). The OV status bit is set when
signed overflow occurs.
Examples:

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 22

X INC @A A = A + 1
 INC R1 ADD 1 TO REG 1
Y INC *R1 INCREMENT WORD -> TO BY R1
 INC *R0+
A BSS 2

INCT INCT INCT INCT ---- Increment by Two Increment by Two Increment by Two Increment by Two

 [label] INCT destination [comment]

The 16-bit destination operand value is incremented by two. The
resultant value is compared to zero to set the L>, A> and EQ
status bits. The CA status bit is set when a carry from bit 0
occurs (i.e. unsigned overflow). The OV status bit is set when
signed overflow occurs.
Examples:

X INCT @A A = A + 2
 INCT R1 ADD 2 TO REG 1
Y INCT *R1 WORD POINTED TO BY R1 + 2
 INCT *R0+
A BSS 2

INV INV INV INV ---- Invert Invert Invert Invert

 [label] INV destination [comment]

The 16-bit destination operand value is replaced by its one's
complement. The destination operand is specified as a general
address. The one's complement is obtained by changing each zero
bit to a one bit, and each one bit to a zero bit. The result
value is compared to zero to set the L>, A> and EQ status bits.
Examples:

X INV @A INVERT BITS OF A
 INV R1 INVERT BITS OF REG 1
Y INV *R1 INVERT BITS OF WORD -> BY R1
 INV *R0+
A BSS 2

JEQ JEQ JEQ JEQ ---- Jump if Equal Jump if Equal Jump if Equal Jump if Equal

 [label] JEQ destination [comment]

If the EQ status bit is set, program execution continues at the
destination label. The destination is specified as a label. The
label must be within the range of -127 to +128 words of the
address of the JEQ instruction. JEQ can be used to test the result
of either signed or unsigned arithmetic or compares.
Examples:

X JEQ A JUMP IF EQUAL
 JEQ B

JGT JGT JGT JGT ---- J J J Jump if Greater Thanump if Greater Thanump if Greater Thanump if Greater Than

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 23

 [label] JGT destination [comment]

If the A> status bit is set, program execution continues at the
destination label. The destination is specified as a label. The
label must be within the range of -127 to +128 words of the
address of the JGT instruction. JGT can be used to test the result
of signed arithmetic or compares.
Examples:

X JGT A JUMP IF GREATER THAN
 JGT B

JH JH JH JH ---- Jump if Logical High Jump if Logical High Jump if Logical High Jump if Logical High

 [label] JH destination [comment]

If the L> status bit is set, program execution continues at the
destination label. The destination is specified as a label. The
label must be within the range of -127 to +128 words of the
address of the JH instruction. JH can be used to test the result
of unsigned arithmetic or compares.
Examples:

X JH A JUMP IF LOGICALLY HIGH
 JH B

JHE JHE JHE JHE ---- Jump if Logical High or Equal Jump if Logical High or Equal Jump if Logical High or Equal Jump if Logical High or Equal

 [label] JHE destination [comment]

If either the L> status bit or the EQ status bit is set, program
execution continues at the destination label. The destination is
specified as a label. The label must be within the range of -127
to +128 words of the address of the JHE instruction. JHE can be
used to test the result of unsigned arithmetic or compares.
Examples:

X JHE A JUMP IF LOG HIGH OR EQUAL
 JHE B

JL JL JL JL ---- Jump if Logical Low Jump if Logical Low Jump if Logical Low Jump if Logical Low

 [label] JL destination [comment]

If neither the EQ status bit nor the L> status bit is set, program
execution continues at the destination label. The destination is
specified as a label. The label must be within the range of -127
to +128 words of the address of the JL instruction. JL can be used
to test the result of unsigned arithmetic or compares.
Examples:

X JL A JUMP IF LOGICAL LOW
 JL B

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 24

JLE JLE JLE JLE ---- Jump if Logical Low or Equal Jump if Logical Low or Equal Jump if Logical Low or Equal Jump if Logical Low or Equal

 [label] JLE destination [comment]

If the L> status bit is not set or if the EQ status bit is set,
program execution continues at the destination label. The
destination is specified as a label. The label must be within the
range of -127 to +128 words of the address of the JLE instruction.
JLE can be used to test the result of unsigned arithmetic or
compares.
Examples:

X JLE A JUMP IF LOG LOW OR EQUAL
 JLE B

JLT JLT JLT JLT ---- Jump if Less Than Jump if Less Than Jump if Less Than Jump if Less Than

 [label] JLT destination [comment]

If neither the A> status bit nor the EQ status bit is set, program
execution continues at the destination label. The destination is
specified as a label. The label must be within the range of -127
to +128 words of the address of the JLT instruction. JLT can be
used to test the result of signed arithmetic or compares.
Examples:

X JLT A JUMP IF ARITH LESS THAN
 JLT B

JMP JMP JMP JMP ---- Jump Unconditionally Jump Unconditionally Jump Unconditionally Jump Unconditionally

 [label] JMP destination [comment]

The JMP causes program execution to continue at the destination
label. The destination is specified as a label. The label must be
within the range of -127 to +128 words of the address of the JMP
instruction.
Examples:

X JMP A CONTINUE AT A
 JMP B

JNC JNC JNC JNC ---- Jump if No Carry Jump if No Carry Jump if No Carry Jump if No Carry

 [label] JNC destination [comment]

If the CA status bit is not set, program execution continues at
the destination label. The destination is specified as a label.
The label must be within the range of -127 to +128 words of the
address of the JNC instruction.
Examples:

X JNC A JUMP IF NO CARRY
 JNC B

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 25

JNE JNE JNE JNE ---- Jump if Not Equal Jump if Not Equal Jump if Not Equal Jump if Not Equal

 [label] JNE destination [comment]

If the EQ status bit is not set, program execution continues at
the destination label. The destination is specified as a label.
The label must be within the range of -127 to +128 words of the
address of the JNE instruction. JNE can be used to test the result
of signed or unsigned arithmetic or compares.
Examples:

X JNE A JUMP NOT EQUAL TO ZERO
 JNE B

JNO JNO JNO JNO ---- Jump if No Overflow Jump if No Overflow Jump if No Overflow Jump if No Overflow

 [label] JNO destination [comment]

If the OV status bit is not set, program execution continues at
the destination label. The destination is specified as a label.
The label must be within the range of -127 to +128 words of the
address of the JNO instruction.
Examples:

X JNO A JUMP NO OVERFLOW
 JNO B

JOC JOC JOC JOC ---- Jump On Carry Jump On Carry Jump On Carry Jump On Carry

 [label] JOC destination [comment]

If the CA status bit is set, program execution continues at the
destination label. The destination is specified as a label. The
label must be within the range of -127 to +128 words of the
address of the JOC instruction.
Examples:

X JOC A JUMP IF CARRY BIT ON
 JOC B

JOP JOP JOP JOP ---- Jump if Odd Pa Jump if Odd Pa Jump if Odd Pa Jump if Odd Parityrityrityrity

 [label] JOP destination [comment]

If the OP status bit is set, program execution continues at the
destination label. The destination is specified as a label. The
label must be within the range of -127 to +128 words of the
address of the JOP instruction.
Examples:

X JOP A JUMP BYTE HAS ODD # OF BITS
 JOP B

LDCR LDCR LDCR LDCR ---- Load CRU Load CRU Load CRU Load CRU

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 26

 [label] LDCR source,count [comment]

Transfer the number of bits specified by the count operand from
the source operand to the CRU. The source operand is specified as
a general address. The count operand is specified as a value in
the range 0 to 15. The transfer begins with the least significant
bit of the source operand value. The CRU address is contained in
workspace register 12. When the count operand is 0, 16 bits are
transferred. If the number of bits to transfer is 8 or less then
the source operand is a byte address, otherwise it is a word
address. The source operand value is compared to zero to set the
L>, A> and EQ status bits. If the number of bits to transfer is 8
or less then the source operand byte is tested to set the OP
status bit.
Examples:

X LDCR @A,5 SEND LOW 5 BITS OF BYTE A
 LDCR R1,0 TRANSFER 16 BITS OF REG 1

LI LI LI LI ---- Load Immediate Load Immediate Load Immediate Load Immediate

 [label] LI destination,value [comment]

The 16-bit immediate data value is loaded into the destination
operand value. The destination operand must be specified as a
workspace register. The immediate data value is compared to zero
to set the L>, A> and EQ status bits.
Examples:

X LI R1,20 R1 = 20.
 LI R0,-30 REG 1 = -30
 LI R15,A R15 = 10
A EQU 10

LIMI LIMI LIMI LIMI ---- Load Interrupt Mask Immediate Load Interrupt Mask Immediate Load Interrupt Mask Immediate Load Interrupt Mask Immediate

 [label] LIMI mask [comment]

The least significant 4 bits of the immediate mask value are
loaded into the interrupt mask of the Status Register. The
remainder of the Status Register is not affected.
Examples:

X LIMI 0 DISABLE INTERRUPTS.
 LIMI 2 ENABLE INTERRUPTS 1 AND 2

LWPI LWPI LWPI LWPI ---- Load Wor Load Wor Load Wor Load Workspace Pointer Immediatekspace Pointer Immediatekspace Pointer Immediatekspace Pointer Immediate

 [label] LWPI value [comment]

The immediate value is loaded into the Workspace Pointer Register.
No status bits are affected by this instruction.
Examples:

X LWPI >F000 SWITCH TO WORKSPACE AT >F000

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 27

 LWPI A USE WORKSPACE A
A BSS 32

MOV MOV MOV MOV ---- Move Word Move Word Move Word Move Word

 [label] MOV source,destination [comment]

The 16-bit source operand value is moved to the destination
operand. Both operands are coded as general addresses. The value
moved is compared to zero to set the L>, A> and EQ status bits.
Examples:

X MOV @A,@B B = A
 MOV @A,R1 MOVE A TO REGISTER 1
 MOV R0,*R1 MOVE R0 TO AREA -> TO BY R1
 MOV *R0+,*R1+
A DATA 10
B DATA 20

MOVB MOVB MOVB MOVB ---- Move Move Move Move Byte Byte Byte Byte

 [label] MOVB source,destination [comment]

The 8-bit source operand value is moved to the destination
operand. Both operands are coded as general addresses. The byte
moved is compared to zero to set the L>, A> and EQ status bits.
The OP status bit is set when the number of bits in the byte is
odd.
Examples:

X MOVB @A,@B B = A
 MOVB @A,R1 MOVE BYTE FROM A TO REG 1
Y MOVB R0,*R1 MOVE BYTE IN R0 TO ADD IN R1
 MOVB *R0+,*R1+
A BYTE 10
B BYTE 20

MPY MPY MPY MPY ---- Multiply Multiply Multiply Multiply

 [label] MPY source,destination [comment]

The 16-bit source operand value is multiplied by the 16-bit
destination operand value using unsigned integer rules. The source
operand is specified as a general address. The destination operand
must be specified as a workspace register. The result of the
multiplication is a 32-bit value that replaces the value in the
specified destination register and the value in the specified
register + 1. Note if the destination register is specified as
register 15, then the destination operand extends into the word of
memory following the workspace. No status bits are affected by
this instruction.
Examples:

X MPY @A,R0 (R0,R1)= A * R0
 MPY R1,R2 (R2,R3)= R1 * R2

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 28

Y MPY *R1,R3 (R3,R4)=(WORD -> BY R1) * R3
 MPY *R0+,R8
A BSS 2

NEG NEG NEG NEG ---- Negate Negate Negate Negate

 [label] NEG destination [comment]

The destination operand value, which is considered to be a signed
number, is replaced by its two's complement. If the number is
positive it is made negative. If the number is negative it is made
positive. The result is compared to zero to set the L>, A> and EQ
status bits. The OV status bit will be set if the original value
is >8000.
Examples:

X NEG @A CHANGE SIGN OF VALUE AT A
 NEG R1 NEGATE VALUE IN REG 1
Y NEG *R1 NEG OF WORD -> TO BY R1
 NEG *R0+
A BSS 2

NOP NOP NOP NOP ---- No Operation No Operation No Operation No Operation

 [label] NOP [comment]

This instruction is exactly like a "JMP $+2". NOP has no operands.
No status bits are affected.
Examples:

X NOP NO OPERATION
 JMP $+2

ORI ORI ORI ORI ---- Or Immediate Or Immediate Or Immediate Or Immediate

 [label] ORI destination,data [comment]

The logical OR of the 16-bit immediate data value and the
destination operand value is performed. The result replaces the
destination operand value. The destination operand must be
specified as a workspace register number. The result is compared
to zero to set the L>, A> and EQ status bits.
Examples:

X ORI R1,>F000 MAKE 1ST NIBBLE OF R1 ONES
 ORI R0,MASK
MASK EQU >000F

RT RT RT RT ---- Return Return Return Return

 [label] RT [comment]

This instruction is exactly like a "B *R11". RT has no operands.
No status bits are affected. This instruction is usually used to
return from a routine invoked via the BL instruction.

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 29

Example:

 X RT RETURN TO MAINLINE CODE

RTWP RTWP RTWP RTWP ---- Return With Workspace Pointer Return With Workspace Pointer Return With Workspace Pointer Return With Workspace Pointer

 [label] RTWP [comment]

This instruction performs the following operations: the Status
Register is loaded from register 15, the Program Counter Register
is loaded from register 14 and the Workspace Pointer Register is
loaded from register 13. RTWP has no operands. This instruction
is usually used to return from a routine invoked via the BLWP
instruction.
Examples:

 X RTWP RETURN TO MAINLINE CODE

S S S S ---- Subtract Word Subtract Word Subtract Word Subtract Word

 [label] S source,destination [comment]

The source operand value is subtracted from the destination
operand value, the result replacing the destination operand value.
Both operands are coded as general addresses. The two 16-bit words
may represent either signed or unsigned numbers. The result is
compared to zero to set the L>, A> and EQ status bits. The CA
status bit is set when a carry from bit 0 occurs (i.e. unsigned
overflow). The OV status bit is set when signed overflow occurs.
Examples:

X S @A,@B B = A - B
 S @A,R1 REG 1 = A - R1
 S R0,*R1 SUB R0 FROM WORD -> TO BY R1
 S *R0+,*R1+
A DATA 10
B DATA 20

SB SB SB SB ---- Subtract Byte Subtract Byte Subtract Byte Subtract Byte

 [label] SB source,destination [comment]

The source operand value is subtracted from the destination
operand value, the result replacing the destination operand value.
Both operands are coded as general addresses. The two 8-bit bytes
may represent either signed or unsigned numbers. The result is
compared to zero to set the L>, A> and EQ status bits. The CA
status bit is set when a carry from bit 0 occurs (i.e. unsigned
overflow). The OV status bit is set when signed overflow occurs.
The OP status bit is set when the number of bits in the result is
odd.
Examples:

X SB @A,@B B = A - B
 SB @A,R1 REG 1 = A - R1

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 30

Y SB R0,*R1 SUB R0 FROM BYTE -> TO BY R1
 SB *R0+,*R1+
A BYTE 10
B BYTE 20

SBO SBO SBO SBO ---- Set Bit One Set Bit One Set Bit One Set Bit One

 [label] SBO displacement [comment]

Sets the selected CRU bit to one. The CRU bit address is the sum
of the displacement operand and the CRU base address. The CRU
base address is contained in bits 0 to 14 of workspace register
12. The displacement operand is a number in the range -128 to
+127. No status bits are affected by this instruction.
Examples:

X SBO 5 SET CRU RELATIVE BIT 5
 SBO -2 SET CRT RELATIVE BIT -2

SBZ SBZ SBZ SBZ ---- Set Bit Zero Set Bit Zero Set Bit Zero Set Bit Zero

 [label] SBZ displacement [comment]

Sets the selected CRU bit to zero. The CRU bit address is the sum
of the displacement operand and the CRU base address. The CRU
base address is contained in bits 0 to 14 of workspace register
12. The displacement operand is a number in the range -128 to
+127. No status bits are affected by this instruction.
Examples:

X SBZ 5 RESET CRU RELATIVE BIT 5
 SBZ -2 RESET CRT RELATIVE BIT -2

SETO SETO SETO SETO ---- Set to Ones Set to Ones Set to Ones Set to Ones

 [label] SETO destination [comment]

The destination operand word is set to all one bits (>FFFF). The
destination operand is specified as a general address. No status
bits are affected by this instruction.
Examples:

X SETO @A A = >FFFF
 SETO R1 REGISTER 1 = -1
Y SETO *R1 WORD AT ADDR IN R1 = >FFFF
 SETO *R0+
A BSS 2

SLA SLA SLA SLA ---- Shift Left Arithmetic Shift Left Arithmetic Shift Left Arithmetic Shift Left Arithmetic

 [label] SLA destination,count [comment]

Shifts the 16-bit destination register left by the number of bits
specified in the count operand. The count operand is in the range
0 to 15. If the count is zero, the shift count is specified in the

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 31

4 least significant bits of workspace register 0. If the least
significant 4 bits of register 0 are also zero then the shift is
16 bits. The result is compared to zero to set the L>, A> and EQ
status bits. The CA status bit is set to the last bit shifted out
of the register. The OV status bit is set if the sign bit (bit 0)
changes from 0 to 1 or from 1 to 0 during the shift operation.
Examples:

X SLA R1,4 SHIFT R1 4 BITS LEFT
 SLA R1,0 SHIFT LEFT BY # BITS IN R0
 SLA R2,1 MULTIPLY R2 BY 2

SOC SOC SOC SOC ---- Set Ones Correspond Set Ones Correspond Set Ones Correspond Set Ones Corresponding Wording Wording Wording Word

 [label] SOC source,destination [comment]

The source operand value is ORed into the destination operand
value, the result replacing the destination operand value. Both
operands are coded as general addresses, and are 16-bit words.
The result is compared to zero to set the L>, A> and EQ status
bits.
Examples:

X SOC @A,@B B = A OR B
 SOC @A,R1 REG 1 = A OR R1
 SOC R0,*R1 OR R0 INTO WORD AT ADD IN R1
 SOC *R0+,*R1+
A DATA 10
B DATA 20

SOCB SOCB SOCB SOCB ---- Set Ones Corresponding Byte Set Ones Corresponding Byte Set Ones Corresponding Byte Set Ones Corresponding Byte

 [label] SOCB source,destination [comment]

The source operand value is ORed into the destination operand
value, the result replacing the destination operand value. Both
operands are coded as general addresses, and are 8-bit bytes. The
result is compared to zero to set the L>, A> and EQ status bits.
The OP status bit is set when the number of bits in the result is
odd.
Examples:

X SOCB @A,@B B = A OR B
 SOCB @A,R1 REG 1 = A OR R1
Y SOCB R0,*R1 OR R0 INTO BYTE -> TO BY R1
 SOCB *R0+,*R1+
A BYTE 10
B BYTE 20

SRA SRA SRA SRA ---- Shift Right Arithmetic Shift Right Arithmetic Shift Right Arithmetic Shift Right Arithmetic

 [label] SRA destination,count [comment]

Shifts the 16-bit destination register right by the number of bits
specified in the count operand. The count operand is in the range

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 32

0 to 15. If the count is zero, the shift count is specified in the
4 least significant bits of workspace register 0. If the least
significant 4 bits of register 0 are also zero then the shift is
16 bits. Vacated bits on the left are filled with the original bit
0. The result is compared to zero to set the L>, A> and EQ status
bits. The CA status bit is set to the last bit shifted out of the
register.
Examples:

X SRA R1,4 SHIFT R1 4 BITS RIGHT
 SRA R1,0 SHIFT RIGHT BY # BITS IN R0
 SRA R1,1 DIVIDE R1 BY 2

SRC SRC SRC SRC ---- Shift Right Circular Shift Right Circular Shift Right Circular Shift Right Circular

 [label] SRC destination,count [comment]

Shifts the 16-bit destination register right by the number of bits
specified in the count operand. The count operand is in the range
0 to 15. If the count is zero, the shift count is specified in the
4 least significant bits of workspace register 0. If the least
significant 4 bits of register 0 are also zero then the shift is
16 bits. Each bit shifted out of the right end of the register is
shifted into the left end. The result is compared to zero to set
the L>, A> and EQ status bits. The CA status bit is set to the
last bit shifted out of the register.
Examples:

X SRC R1,4 SHIFT R1 4 BITS RIGHT
 SRC R1,0 SHIFT RIGHT BY # BITS IN R0

SRL SRL SRL SRL ---- Shift Right Logical Shift Right Logical Shift Right Logical Shift Right Logical

 [label] SRL destination,count [comment]

Shifts the 16-bit destination register right by the number of bits
specified in the count operand. The count operand is in the range
0 to 15. If the count is zero, the shift count is specified in the
4 least significant bits of workspace register 0. If the least
significant 4 bits of register 0 are also zero then the shift is
16 bits. Vacated bits on the left are filled with zero bits. The
result is compared to zero to set the L>, A> and EQ status bits.
The CA status bit is set to the last bit shifted out of the
register.
Examples:

X SRL R1,4 SHIFT R1 4 BITS RIGHT
 SRL R1,0 SHIFT RIGHT BY # BITS IN R0

STCR STCR STCR STCR ---- Store CRU Store CRU Store CRU Store CRU

 [label] STCR destination,count [comment]

Transfer the number of bits specified by the count operand from
the CRU to the destination operand. The destination operand is

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 33

specified as a general address. The count operand is specified as
a value in the range 0 to 15. The transfer begins into the least
significant bit of the destination operand value. The CRU address
is contained in workspace register 12. When the count operand is
0, 16 bits are transferred. If the number of bits to transfer is 8
or less then the destination operand is a byte address, otherwise
it is a word address. The destination operand value is compared to
zero to set the L>, A> and EQ status bits. If the number of bits
to transfer is 8 or less then the destination operand byte is
tested to set the OP status bit.
Examples:

X STCR @A,5 GET CRU BITS INTO THE.
* LOW 5 BITS OF BYTE A.
 STCR R1,0 GET 16 BITS INTO REGISTER 1

STST STST STST STST ---- Sto Sto Sto Store Status Registerre Status Registerre Status Registerre Status Register

 [label] STST destination [comment]

The Status Register is stored into the destination operand. The
destination operand is specified as a workspace register. No
status bits are affected by this instruction.
Examples:

X STST R0 SAVE STATUS IN R0
 STST R15

STWP STWP STWP STWP ---- Store Workspace Pointer Store Workspace Pointer Store Workspace Pointer Store Workspace Pointer

 [label] STWP destination [comment]

The Workspace Pointer Register is stored into the destination
operand. The destination operand is specified as a workspace
register. No status bits are affected by this instruction.
Examples:

X STWP R0 SAVE WP IN R0
 STWP R15

SWPB SWPB SWPB SWPB ---- Swap Bytes Swap Bytes Swap Bytes Swap Bytes

 [label] SWPB destination [comment]

The two bytes in the destination operand word are interchanged.
The destination operand is specified as a general address. No
status bits are affected by this instruction.
Examples:

X SWPB @A INTERCHANGE BYTES OF A.
 SWPB R1 INTERCHANGE BYTES IN R1.
Y SWPB *R1 SWAP OF BYTES -> TO BY R1
 SWPB *R0+
A BSS 2

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 34

SZC SZC SZC SZC ---- Set Zeros Corresponding Word Set Zeros Corresponding Word Set Zeros Corresponding Word Set Zeros Corresponding Word

 [label] SZC source,destination [comment]

The source operand value is examined and for each 1 bit found, the
corresponding bit in the destination operand value is set to zero.
Both operands are coded as general addresses, and are 16-bit
words. The result is compared to zero to set the L>, A> and EQ
status bits.
Examples:

X SZC @A,@B ZERO LAST BIT OF B
 SZC @C,R1 ZERO 1ST BIT OF R1
 SZC R0,*R1
 SZC *R0+,*R1+
A DATA >0001
B DATA 20
C DATA >8000

SZCB SZCB SZCB SZCB ---- Set Zeros Corresponding Byte Set Zeros Corresponding Byte Set Zeros Corresponding Byte Set Zeros Corresponding Byte

 [label] SZCB source,destination [comment]

The source operand value is examined and for each 1 bit found, the
corresponding bit in the destination operand value is set to zero.
Both operands are coded as general addresses, and are 8-bit bytes.
The result is compared to zero to set the L>, A> and EQ status
bits. The OP status bit is set when the number of bits in the
result is odd.
Examples:

X SZCB @A,@B ZERO LAST BIT OF BYTE B
 SZCB @A,R1 ZERO 1ST BIT OF R1
Y SZCB R0,*R1
 SZCB *R0+,*R1+
A BYTE >01
B BYTE 20

 C BYTE >80

TB TB TB TB ---- Test CRU Bit Test CRU Bit Test CRU Bit Test CRU Bit

 [label] TB displacement [comment]

Tests the selected CRU bit. The CRU bit address is the sum of the
CRU base address and the signed displacement in the operand field.
The CRU base address is contained in bits 0 to 14 of workspace
register 12. The displacement operand is a number in the range -
128 to +127. The EQ status bit is set if the CRU bit was set.
Examples:

 LI R12,>1100 CRU BASE ADDRESS
X TB 4 TEST BIT AT >1108

X X X X ---- Execute Execute Execute Execute

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 35

 [label] X destination [comment]

The machine instruction at the destination address is executed.
The destination address is specified as a general address. When
the instruction at the destination address is not a single word
instruction then the extra words of the instruction are fetched
from memory following the X instruction. If the executed
instruction is a JMP then the jump is taken relative to the PC
which is positioned just after the X instruction. No status bits
are set by the X instruction, but the subject instruction sets the
status bits as normal for that instruction.
Examples:

X X @A EXECUTE INST AT A
 X R15 EXECUTE INST IN R15

XOP XOP XOP XOP ---- Extended Operation Extended Operation Extended Operation Extended Operation

 [label] XOP source,value [comment]

The XOP instruction causes a context switch, similar to BLWP, to
the transfer vector selected by the "value" operand. The "value"
operand is a number in the range 0 to 15. The transfer vector for
value 0 is at location >0040, for value 1 is at location >0044,
and etc. The transfer vector is a workspace pointer address and a
program counter value. During execution of the XOP instruction,
the current workspace pointer is saved in register 13 of the new
workspace, the current program counter is saved in register 14 of
the new workspace, the current status register is saved in
register 15 of the new workspace, and the address specified by the
"source" operand is stored in register 11 of the new workspace.
The X status bit is set indicating the XOP instruction has been
executed. The routine called by the XOP instruction can resume
execution at the code following the XOP by using the RTWP to
restore the WP, PC and ST registers.

The XOP instruction is usually used to request a service from the
operating system.
Examples:

X XOP @A,0 TRANSFER TO XOP 0 ROUTINE
 XOP R15,1 TRANSFER TO XOP 15 CODE

XOR XOR XOR XOR ---- Exclusive OR Exclusive OR Exclusive OR Exclusive OR

[label] XOR source,destination [comment]

The bit-wise exclusive OR of the 16-bit source and destination
operands replaces the destination operand. The source operand is
coded as a general address. The destination operand is coded as a
workspace register. The exclusive OR of two bits is defined as 0
if both bits are 0 or if both bits are 1; otherwise the result is
1. The result of the exclusive OR is compared to zero to set the
L>, A> and EQ status bits.
Examples:

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 36

X XOR @A,R0 XOR OF A AND R0
 XOR R15,R2 R2= R15 XOR R2
A DATA 9

MACRO DIRECTIVESMACRO DIRECTIVESMACRO DIRECTIVESMACRO DIRECTIVES

Macro directives are used to define macros or to define new
instruction operation codes. Macro definitions and operation code
definitions may be placed in the source file or in the macro
library file. Macro directive statements have a different form
than the other Assembler statements. There is no label field on
macro directives and the directive operator must begin in position
one of the statement. All macro directive operators begin with a
dollar sign so that all macro directive statements begin with a
dollar sign in position one. The macro directives are described in
the following sections.

$END $END $END $END ---- End of Macro Definition End of Macro Definition End of Macro Definition End of Macro Definition

 $END [comment]

A macro definition must end with the $END directive. There are no
operands on this directive.

Example. A macro definition appears as follows:

$MACRO BNE
 .
 .
 .
$END

$ERROR $ERROR $ERROR $ERROR ---- Issue Error Message Issue Error Message Issue Error Message Issue Error Message

 $ERROR string [comment]

This directive causes an assembler error message to be printed.
The operand field contains the message string to be inserted into
the standard assembler error message line. Any macro symbols in
the string are replaced by their values. The maximum length of an
assembler error message is 20 characters. This directive is useful
for issuing diagnostics when the parameters to a macro are not
correct.
Examples:

$ERROR '&P1 OPERAND INVALID'
$ERROR 'INCORRECT VALUE'

$EXIT $EXIT $EXIT $EXIT ---- Exit from Macro Exit from Macro Exit from Macro Exit from Macro

 $EXIT [comment]

The $EXIT macro indicates the end of macro generation. Note that
the $END directive which defines the physical end of a macro

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 37

definition also indicates the end of macro generation. The $EXIT
directive has no operands.

$GOTO $GOTO $GOTO $GOTO ---- Branch Within Branch Within Branch Within Branch Within MacroMacroMacroMacro

 $GOTO label [comment]

This directive causes a GOTO within a macro definition. The
operand field contains the target label which must appear on a
$LABEL directive. The operand field is scanned and any macro
symbols are replaced by their value before the search for the
label is begun.
Examples:

$GOTO XYZ
$GOTO &L2
$GOTO X&G3
$GOTO &P1(1.2)

$IF $IF $IF $IF ---- Conditional Branch Within Macro Conditional Branch Within Macro Conditional Branch Within Macro Conditional Branch Within Macro

 $IF expr1,relop,expr2,label [comment]

This directive causes a conditional branch within the macro
definition. The two expressions are evaluated in the same way as
the expression on a $SET directive. The two results are then
compared as character strings. If the relation specified by the
relational operator, "relop", is true then a $GOTO is executed to
the label specified as the fourth operand.

The relational operators are:

EQ - equal
NE - not equal
GT - greater than
GE - greater than or equal
LT - less than

 LE - less than or equal

If the two strings being compared are different lengths and are
the same up to the length of the shorter, then the shorter string
is less than the longer. For example, 'XYZ' is less than 'XYZA'.
Examples:

$IF '&P1',EQ,'XYZ',ISXYZ
$IF &P2,LT,3,L21
$IF '&P3',NE,'&G1&G2',NEW
$IF '&P4',GE,'A123',&G5
 ...
$LABEL ISXYZ
 ...
$LABEL L21
 ...
$LABEL NEW

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 38

$LABEL $LABEL $LABEL $LABEL ---- Define Macro Label Define Macro Label Define Macro Label Define Macro Label

 $LABEL label [comment]

This directive defines a label which may be the target of a $GOTO
or $IF directive. The operand field contains the label. The label
must be 1 to 6 characters, the first of which is a letter. No
macro symbols are allowed.
Examples:

$LABEL XYZ.
$LABEL A12345

$MACRO $MACRO $MACRO $MACRO ---- Begin Macro Definition Begin Macro Definition Begin Macro Definition Begin Macro Definition

 $MACRO name [comment]

A macro definition must begin with the $MACRO directive. The
"name" specified is the macro name and is used as an operation
code to invoke the macro. The name must be from 1 to 6 characters
the first of which must be a letter. Macro names must be different
from any predefined instruction operation code or assembler
directive operation code.
Examples:

$MACRO BNE
$MACRO TEST23

$OPCODE $OPCODE $OPCODE $OPCODE ---- Define Operation Code Define Operation Code Define Operation Code Define Operation Code

 $OPCODE name,value,type [comment]

This directive defines a new operation code to the assembler. The
mnemonic for the operation code is "name" and must be different
from all other operation codes, assembler directives and macro
names. The 16-bit operation code is "value". The "type" of
instruction being defined is one of the following.

| TYPE | OPERANDS | LIKE |
|----------------------------------|
| 0 | source,destination | MOV |
| 2 | destination | ABS |
| 4 | reg,immediate-data | LI |
| 6 | label | JMP |
| 8 | source,register | MPY |
| 10 | source,#-of-bits | LDCR |
| 12 | reg,count | SLA |
| 14 | (none) | RTWP |
| 16 | immediate-value | LWPI |
| 18 | register | STST |
| 20 | bit-displacement | SBO |

Examples: define the 9995 extra instructions.

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE ASSEMBLER LANGUAGE REFERENCE 39

$OPCODE DIVS,>0180,2 DIVIDE SIGNED
$OPCODE MPYS,>01C0,2 MULTIPLY SIGNED
$OPCODE LST,>0080,18 LOAD STATUS
$OPCODE LWP,>0090,18 LOAD WORKSPACE POINTER

$REM $REM $REM $REM ---- Macro Reminder Macro Reminder Macro Reminder Macro Reminder

 $REM [comment]

This directive provides comments within a macro definition.
Examples:

$REM &P1 IS LENGTH
$REM LENGTH MUST BE LESS THAN 20

$SET $SET $SET $SET ---- Set Macro Symbol Set Macro Symbol Set Macro Symbol Set Macro Symbol

 $SET symbol,value [comment]

This directive is used to set the value of local and/or global
macro symbols. (The values of parameter and system macro symbols
are set by the assembler.) The first operand of the $SET directive
names the macro symbol whose value is being set. The second
operand is the expression which defines the value the macro symbol
is to have.

The expression is scanned and any macro symbols are replaced by
their values before the expression is evaluated. The expression
may be a quoted string or a numeric expression. If the expression
is a numeric expression, it is evaluated then converted to a
string of length 5, with leading zeros. NOTE: all arithmetic in
the Assembler is done to 16 bits, that is, numbers range from 0 to
65536 with no negative numbers. In most statements, this is not a
problem but it must be kept in mind when coding $SET and $IF macro
directives.
Examples:

$SET &L1,'XYZ' &L1='XYZ'
$SET &L2,2 &L2='00002'
$SET &G3,&L2+1 &G3='00003'
$SET &G4,'&L1ABC' &G4='XYZABC'
$SET &G5,'&L1&L2' &G5='XYZ00002'
$SET &L6,'&L1(2.1)' &L6='Y'
$SET &L7,'&L1.(2.1)' &L7='XYZ(2.1)'
$SET &G8,'&L2+1' &G8='00002+1'

