
 PATCH UTILITY VERSION 4PATCH UTILITY VERSION 4PATCH UTILITY VERSION 4PATCH UTILITY VERSION 4 1

(TI WRITER Version 4 Required)

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION

This manual and the RAGPATCH program described in it are
PUBLIC DOMAIN. They are being distributed in order to
provide a uniform means of distributing patches to
GROM/GRAM modules and to Assembler Language program
modules. The patch program also provides an organized way
of keeping track of patches you have made to programs. The
patches can be made from statements in a file. Even though
the program modules being patched may be copyrighted and
cannot be distributed, your patch file and the patch
utility can be distributed as you see fit.

You are requested to distributed only complete copies of
the Patch Utility. There are three files:

PATCHDOC The documentation
RAGPATCH The Patch Program
XBPATCH Extended BASIC Loader

Any errors, omissions or contributions can be mailed to:

RAG SOFTWARE
R. A. Green.
1032 Chantenay Dr.
Gloucester, Ont.
CANADA

 K1C 2K9

THE PATCH UTILITYTHE PATCH UTILITYTHE PATCH UTILITYTHE PATCH UTILITY

The Patch Utility, RAGPATCH, gives you an organized means
of making patches to a GPL program in GRAM or to an
Assembler Language program on disk. These patches can be
modifications, bug fixes or installation options. The
utility can read patches from the console keyboard or from
a "Patch File". The patch file, which you create with a
text editor, for input to the patch utility also serves as
a permanent record of what you have patched.

The Patch Utility is a standard E/A Option 5 assembler
language program that can be loaded and run using any E/A
Option 5 loader. An Extended BASIC loader is supplied.
The program is independent from the means of loading it.
The patch utility will prompt you for the name of the patch
file. If no patch file name is given, the patch statements
will be read from the console.

 PATCH UTILITY VERSION 4PATCH UTILITY VERSION 4PATCH UTILITY VERSION 4PATCH UTILITY VERSION 4 2

The Patch File

The patch file, created with any text editor, can contain
eight types of statements, three to identify the
destination or target of the patches: GRAM, FILE and CFILE;
three to specify the patches: EXPAND, PATCH and VERIFY; and
two for notes: SAY and Comments. The entries in the patch
file may be in either upper or lower case. Comments are
identified by an asterisk in column one. The other
statements have the following formats:

GRAM type,page
FILE filename
CFILE filename,length
EXPAND amount.
PATCH addr,data,data,..
VERIFY addr,data,data,...
SAY anytext

The keyword identifying the statement must begin in column
one and must be followed by at least one blank. The operand
field is terminated by the end of the statement or by a
blank.

The GRAM statement identifies the destination of the
patches to be a GRAM device. The "type" specifies the type
of GRAM device. It is specified as:

GK Gram Kracker.
GU Gramulator.
PG P-Gram or P-Gram+ Card.

The GRAM type is used to enable the device for GRAM writes
if no GRAM type is specified then no special action is
taken. If "type" is PG (for the P-Gram+ Card) then the
"page" operand is processed. It is the GRAM page to be
patched, specified as 1 to 4.

Note that a GRAM/GROM program saved to disk is identical in
form to a standard E/A Option 5 program and can be patched
on disk using the FILE statement.

The FILE statement names the standard E/A Option 5 program
file on disk to be patched. The three word header from the
file will be displayed when the file is read. A complete
Assembler Language program may consist of more than one
segment, each in a separate file. Each file must be patched
separately.

The CFILE statement names a non-standard program file on
disk to be patched, and gives the length of the program
segment contained in the file. Non-standard, or "custom"
program files have no three word header. Addresses for
custom program files always begin at zero. The length is

 PATCH UTILITY VERSION 4PATCH UTILITY VERSION 4PATCH UTILITY VERSION 4PATCH UTILITY VERSION 4 3

specified in hexadecimal. The ">" usually used to indicate
hexadecimal notation is optional.

The EXPAND statement allows the length of the module to be
changed by the "amount" specified. The amount is specified
in hexadecimal. The ">" usually used to indicate
hexadecimal notation is optional. The amount is specified
in two's complement notation. A negative amount shortens
the program (i.e. >FFFE is -2).

The PATCH and VERIFY statements are similar. The first
operand, "addr", is the address at which the patch or
verification is to begin. The address is specified in
hexadecimal. The ">" usually used to indicate hexadecimal
notation is optional.

The one or more "data" items may be specified as either an
even number of hexadecimal digits (with or without the ">")
or as text enclosed in single (') or double (") quotes.
Within the text an occurrence of the enclosing quote is
represented by two consecutive quotes.

The VERIFY statement causes the data in the program file to
be compared to the specified data. If a comparison is not
equal then all following PATCH statements are processed but
no patches are made. Additionally, if any syntax errors are
detected then all following statements are processed but no
patches are made.

The SAY statement simply prints up to 28 characters of the
text on the screen. This could be used to inform the
console operator what is being patched.
......................

