

RAG SOFTWARERAG SOFTWARERAG SOFTWARERAG SOFTWARE

AEMS MACRO ASSEMBLERAEMS MACRO ASSEMBLERAEMS MACRO ASSEMBLERAEMS MACRO ASSEMBLER

9900 CPU REFERENCE9900 CPU REFERENCE9900 CPU REFERENCE9900 CPU REFERENCE

 ==== ==== ==== ====
 ======== Asgard Macro Assembler ======== Asgard Macro Assembler ======== Asgard Macro Assembler ======== Asgard Macro Assembler
 ========== Expanded Version 1 ========== Expanded Version 1 ========== Expanded Version 1 ========== Expanded Version 1
 == AEMS == Memory R. A. Green == AEMS == Memory R. A. Green == AEMS == Memory R. A. Green == AEMS == Memory R. A. Green
 ========== System ========== System ========== System ========== System
 ======== ======== ======== ========
 ==== ==== ==== ====

CONTENTSCONTENTSCONTENTSCONTENTS

THE ADDRESS SPACE 1
NUMBER SYSTEMS 1
9900 CPU REGISTERS 4
 Program Counter Register 4
 Status Register 4
 Workspace Pointer Register 4
 Special Workspace Registers 5
 Communications Register Unit ... 5
CARRY AND OVERFLOW 5
ADDRESSING MODES 6
 Direct Memory 7
 Indexed Memory 7
 Workspace Register Direct 7
 Workspace Register Indirect 7
 Workspace Register Indirect
 Autoincrement 8
 Immediate Data 8
 Program Counter Relative 8
 CRU Relative 9
CONTEXT SWITCHING 9
AEMS MAPPER10

This manual and the AEMS Macro Assembler program are copyright (c)
1993 by RAG SOFTWARE.

January 1993

TI 99/4A Macro Assembler - TMS 9900 REFERENCE 1

THE ADDRESS SPACETHE ADDRESS SPACETHE ADDRESS SPACETHE ADDRESS SPACE

The TMS 9900 Microprocessor is a 16-bit microprocessor, with a
rich instruction set. The memory of the 9900 is organized into 16-
bit words each of which contains two 8-bit bytes. The
microprocessor has instructions to operate on both words and
bytes. The memory addresses used by the 9900 are also 16-bit,
limiting the "address space" to 65536 bytes, numbered 0 to 65535.

NUMBER SYSTEMSNUMBER SYSTEMSNUMBER SYSTEMSNUMBER SYSTEMS

The 9900, like most computers, operates on binary numbers. It can
process either 8-bit (8 binary digits) bytes or 16-bit words.
Binary numbers are base (or radix) two. There are only two
digits, zero and one. The following table shows the binary
representation of some decimal numbers.

DECIMAL BINARY

 1 1
 2 10
 10 1010
 256 100000000

The table shows that writing numbers in binary soon gets to be a
tiresome job, so that binary notation is almost never used.
Decimal notation is usually used, but this requires that some
program, like an Assembler or Compiler translate the decimal
numbers into the computer's binary numbers.

When programming the computer, especially in Assembler Language,
one often must refer to memory addresses and to individual bits in
bytes or words. The table below shows some such references.
Because the underlying number base is two, these common quantities
are difficult numbers in the decimal system and seem unrelated to
each other.

DECIMAL QUANTITY

 1024 1K
 65535 Highest Address
 128 First bit of a byte
 64 Second bit of a byte
 32768 First bit of a word
 16384 Second bit of a word

To solve the problem of these difficult numbers, the hexadecimal
number system is usually used when referring to numbers which
represent addresses and values of individual bits, and decimal
numbers are used only when dealing with the world external to the
computer (i.e. to the user).

TI 99/4A Macro Assembler - TMS 9900 REFERENCE 2

The hexadecimal system is base 16 which is a power of two. A
hexadecimal digit thus exactly represents 4 binary digits or bits.
A byte then is nicely represented as two hexadecimal digits and a
word as four. The hexadecimal number system has 16 digits as shown
below.

HEX BINARY DECIMAL

 0 0000 0
 1 0001 1
 2 0010 2
 3 0011 3
 4 0100 4
 5 0101 5
 6 0110 6
 7 0111 7
 8 1000 8
 9 1001 9
 A 1010 10
 B 1011 11
 C 1100 12
 D 1101 13
 E 1110 14
 F 1111 15

Although at first hex numbers may seem hard to do arithmetic on,
with practice (and a hex calculator) it can be mastered. Some
numbers that programmers must handle are easier to work with in
hex than in decimal. Below we redo one of the previous tables to
demonstrate this.

DECIMAL HEX QUANTITY

 1024 >400 1K
 65535 >FFFF Highest Address
 128 >80 First bit of a byte
 64 >40 Second bit of a byte
 32768 >8000 First bit of a word
 16384 >4000 Second bit of a word

Only positive numbers have been dealt with so far, with a byte
representing numbers in the range 0 to 255 (>0 to >FF) and words
representing numbers in the range 0 to 65535 (>0 to >FFFF). The
computer can also process negative numbers. The computer actually
operates on two types of numbers with exactly the same
instructions:

 1. Unsigned or logical numbers in the range 0 to 255 for bytes
 and the range of 0 to 65535 for words.
 2. Signed or two's complement numbers in the range -128 to +127
 for bytes and -32768 to +32767 for words. Note that the
 negative values have a magnitude one greater than the
 positive values.

TI 99/4A Macro Assembler - TMS 9900 REFERENCE 3

The "two's complement" representation of signed numbers is used,
rather than having a sign and a value (as is ordinarily done in
decimal) to simplify the computer hardware and to enhance the
speed of operation. It is because two's complement notation is
used that a single instruction can operate on either signed or
unsigned numbers.

To negate a number its two's complement is taken. The definition
of the two's complement operation is: "the one's complement plus
one". The one's complement is easy -- every bit in the value is
reversed. The following table shows these operations.

DEC BINARY ONE'S C TWO'S C DEC

 1 00000001 11111110 11111111 -1
 2 00000010 11111101 11111110 -2
17 00010001 11101110 11101111 -17
32 00100000 11011111 11100000 -32

The one's complement plus one rule is somewhat cumbersome to use.
A better rule for finding the two's complement is to invert all
bits up to but not including the last "one" bit in the value.

As mentioned before, the same instructions operate on both signed
and unsigned numbers. Because of the two's complement notation
used for signed numbers, the computation and the result are the
same. Differences occur only in the interpretation of the result.
The program interprets the result not the computer. The program
interprets the result of a computation by testing the status bits
in the status register. If the calculation was on signed numbers,
the program tests the A>, EQ or OV status bits. If the
calculation was on unsigned numbers, the program tests the L>, EQ
or CA status bits. The meaning of the status bits is shown below.

A> Arithmetically greater than (signed)
EQ Equal to (signed)
OV Overflow, number too large (signed)
L> Logically greater than (unsigned)
EQ Equal to (unsigned)
CA Carry, number too large (unsigned)

The status bits are not set directly by a calculation. They are
set only by a comparison of two values, however, after almost
every calculation, the result is compared to zero in order to set
the status bits. Note that zero (or equal) is the same for either
signed or unsigned numbers.

TI 99/4A Macro Assembler - TMS 9900 REFERENCE 4

9900 CPU REGISTERS9900 CPU REGISTERS9900 CPU REGISTERS9900 CPU REGISTERS

The 9900 CPU has four "hardware registers" used to control the CPU
and maintain its status. The hardware registers are:

PC - Program Counter
WP - Workspace Pointer
ST - Status
CRU - Communications Register Unit

The 9900 also has multiple sets of "software registers" each set
of which is called a workspace. Each workspace consists of 16
consecutive words of memory, giving 16 software registers in a
set.

The hardware registers are seldom referred to directly and thus
their full name is usually used when they are referred to. The
term "register" is usually used to refer to one of the software
workspace registers.

Program Counter RegisterProgram Counter RegisterProgram Counter RegisterProgram Counter Register

The Program Counter (PC) contains the word address of the next
instruction to be executed by the CPU. As part of the execution
of each instruction the PC is updated to point to the next
instruction.

Status RegisterStatus RegisterStatus RegisterStatus Register

The Status Register (ST) is a 16-bit register which maintains the
status of the computer. Each of the bits has a particular
function. These functions are listed below.

 BIT ID FUNCTION

 0 L> Logical greater than flag
 1 A> Arithmetically greater than flag
 2 EQ Equal to flag
 3 CA Logical carry flag
 4 OV Arithmetic overflow flag
 5 OP Odd parity in byte flag
 6 X XOP instruction flag
 7 -- Unused
 8 -- Unused
 9 -- Unused
 10 Unused
 11 -- Unused
12-15 -- Interrupt mask

Workspace Pointer RegisterWorkspace Pointer RegisterWorkspace Pointer RegisterWorkspace Pointer Register

The Workspace Pointer register (WP) has the memory address of the
current workspace. The workspace registers may be addressed by
their register number, 0 to 15, or by their full memory address.

TI 99/4A Macro Assembler - TMS 9900 REFERENCE 5

Special Workspace RegistersSpecial Workspace RegistersSpecial Workspace RegistersSpecial Workspace Registers

Some workspace registers have special functions. These special
functions are shown below.

REGISTER FUNCTION
--
 0 Cannot be used for indexing
 0 Holds shift count when the count in the shift
 instruction is zero
 11 Contains the return address from the BL instruction
 11 Contains the effective address for the XOP instruction
 12 Contains the CRU base address in bits 0-14
 13 Contains the saved WP during BLWP, RTWP, XOP and
 interrupts
 14 Contains the saved PC during BLWP, RTWP, XOP and
 interrupts
 15 Contains the saved ST during BLWP, RTWP, XOP and
 interrupts

Each of the above registers can be used for other things when the
noted instructions are not being used.

Communications Register UnitCommunications Register UnitCommunications Register UnitCommunications Register Unit

The Communications Register Unit (CRU) is a 4096-bit register that
is used by the CPU to communicate with the devices attached to it.
Workspace register 12 contains the CRU base address in bits 0-14
when using instructions that test or modify CRU bits. Because the
CRU bit address uses only the first 15 bits of register 12, the
bit addresses used in programming are two times the hardware
address. For example, to load the base address for CRU bit 5 the
following would be coded.

 LI R12,10 CRU BASE ADDRESS 5

CARRY AND OVERFLOWCARRY AND OVERFLOWCARRY AND OVERFLOWCARRY AND OVERFLOW

The Carry Status Bit (CA) is set when a bit is carried out to the
left in arithmetic or shift operations, and as such, represents
overflow in unsigned arithmetic. The Overflow Status Bit (OV) is
set when signed arithmetic or shift operations cause an overflow.
Overflow occurs when the result is too large to represent in the
number system being used. Some examples shown below may clarify
the setting of the CA and OV status bits. Each example shows the
operation done to 20 bits of accuracy so that the carrys and
overflows can be seen.

TI 99/4A Macro Assembler - TMS 9900 REFERENCE 6

20 Bit: 0FFFF + 0FFFF = 1FFFE
16 Bit: FFFF + FFFF = FFFE
Signed: -1 + -1 = -2 OV=0
Unsigned: 65535 + 65535 = 65534 CA=1

20 Bit: 0FFFF + 00001 = 10000
16 BIT: FFFF + 0001 = 0000
Signed: -1 + 1 = 0 OV=0
Unsigned: 65535 + 1 = 0 CA=1

20 Bit: 07FFF + 00001 = 08000
16 Bit: 7FFF + 0001 = 8000
Signed: 32767 + 1 = -32768 OV=1
Unsigned: 32767 + 1 = 32768 CA=0

20 Bit: 07FFF + 07FFF = 0FFFE
16 Bit: 7FFF + 7FFF = FFFE
Signed: 32767 + 32767 = -2 OV=1
Unsigned: 32767 + 32767 = 65534 CA=0

20 Bit: 08000 + 08000 = 10000
16 Bit: 8000 + 8000 = 0000
Signed: -32768 + -32768 = 0 OV=1
Unsigned: 32768 + 32768 = 0 CA=1

Subtract is done as "two's complement and add".

16 Bit: FFFF - FFFF = 0000
20 Bit: 0FFFF + 00001 = 10000
Signed: -1 - -1 = 0 OV=0
Unsigned: 65535 - 65535 = 0 CA=1

16 Bit: 8000 - 8000 = 0000
20 Bit: 08000 + 08000 = 10000
Signed: -32768 - -32768 = 0 OV=0
Unsigned: 65535 - 65535 = 0 CA=1

16 Bit: 8000 - 0001 = 7FFF
20 Bit: 08000 + 0FFFF = 17FFF
Signed: -32768 - 1 = 32767 OV=1
Unsigned: 32768 - 1 = 32767 CA=1

16 Bit: 0001 - 0001 = 0000
20 Bit: 00001 + 0FFFF = 10000
Signed: 1 - 1 = 0 OV=0
Unsigned: 1 - 1 = 0 CA=1

ADDRESSING MODESADDRESSING MODESADDRESSING MODESADDRESSING MODES

The instructions in a program must address the data in memory or
the CRU on which they are to operate. The 9900 provides 7
addressing modes to provide both compactness of code and
flexibility in dealing with data structures in memory, and one
addressing mode for addressing the CRU bits. The 8 modes are:

TI 99/4A Macro Assembler - TMS 9900 REFERENCE 7

1 Direct Memory
2 Indexed Memory
3 Workspace Register Direct
4 Workspace Register Indirect
5 Workspace Register Indirect Auto-increment
6 Immediate Data
7 Program Counter Relative
8 CRU Relative

Modes 1 to 5 are collectively called "general address mode".
Modes 6 to 8 are used in instructions which allow only the
individual modes. Each of these addressing modes is described in
the following sections.

Direct MemoryDirect MemoryDirect MemoryDirect Memory

In this mode of addressing memory, the full 16-bit address of the
memory location is contained in the instruction. The length of
the instruction is extended to 2 or 3 words as needed. Direct
memory addressing is indicated in Assembler language by preceding
the symbolic or actual memory address by an at sign (@). For
example:

CLR @FLAG ZERO FLAG WORD
MOV @A,@B MOVE A TO B

Indexed MemoryIndexed MemoryIndexed MemoryIndexed Memory

In this mode of addressing memory, a 16-bit base address is given
in the instruction and an index value in a workspace register is
specified. The two 16-bit values are added together to give the
full or effective address. Indexed memory addressing is indicated
in Assembler language by preceding the symbolic or actual base
address by an at sign and following it with the index register
number in parentheses. Note that workspace register zero cannot
be used for indexing. For example:

CLR @FLAG(R2) ZERO FLAG INDEXED BY R2
MOV @A,@B(R3) MOVE A TO B INDEXED BY R3

Workspace Register DirectWorkspace Register DirectWorkspace Register DirectWorkspace Register Direct

In this mode of addressing memory (remember that the workspace
registers are in memory), the quantity being addressed is in one
of the workspace registers. The register number, 0-15, is
specified in the instruction. In Assembler Language, workspace
register addressing is assumed if no other indication is given.
For example:

CLR R2 ZERO REGISTER 2
MOV R2,R5 MOVE VALUE IN R2 TO R5

Workspace Register IndirectWorkspace Register IndirectWorkspace Register IndirectWorkspace Register Indirect

TI 99/4A Macro Assembler - TMS 9900 REFERENCE 8

In this mode of addressing memory, the actual memory address is in
a workspace register. The register number containing the address
is specified in the instruction. In Assembler Language, workspace
register indirect addressing is specified by preceding the
register number by an asterisk. For example:

LI R2,>A000 R2=MEMORY ADDRESS
CLR *R2 CLEAR WORD AT >A000
MOV R0,*R2 MOVE VALUE IN R0 TO >A000

Workspace Register Indirect AutoincrementWorkspace Register Indirect AutoincrementWorkspace Register Indirect AutoincrementWorkspace Register Indirect Autoincrement

In this mode of addressing memory, the actual memory address is in
a workspace register just as for workspace register indirect
addressing. However, as well as using the address in the register
to access memory, the value in the register is incremented after
it has been used. The value is incremented by one for byte
operations and by two for word operations. The register number
containing the address is specified in the instruction. In
Assembler Language, workspace register indirect addressing is
specified by preceding the register number by an asterisk and
following the register number by a plus sign. For example:

LI R2,>A000 R2=MEMORY ADDRESS
CLR *R2+ CLEAR WORD AT >A000, INC R2
MOV R0,*R2+ VALUE IN R0 TO >A002, INC R2

Immediate DataImmediate DataImmediate DataImmediate Data

In this mode of addressing, the instruction itself contains the
word of data to be used. The operation is performed on a value in
a workspace register using the data in the instruction. Immediate
instructions are all two words long, one word for the instruction
and register number and one word for the immediate data. For
example:

LI R2,10 R2=10
AI R2,5 R2=15

Program Counter RelativeProgram Counter RelativeProgram Counter RelativeProgram Counter Relative

This addressing mode is used only by the jump instructions. The
jump instructions contain a one byte signed displacement which is
multiplied by 2 and added to the Program Counter to cause a jump
to the new address (if test for the jump is true). Since the
displacement is multiplied by two it is actually a signed number
of words. Note that the Program Counter will be updated to the
address of the next instruction (i.e. the one following the jump)
before the displacement is added. In Assembler Language, the jump
instructions are coded with a label to indicate the jump target
and the Assembler calculates the displacement necessary for the
instruction. Note that the range of the jump is limited to -128
words to +127 words from the byte following the jump instruction.

TI 99/4A Macro Assembler - TMS 9900 REFERENCE 9

The Assembler will issue a "RANGE ERROR" message is the target is
not within this range. For example:

JMP A JUMP TO A
JGT B IF GREATER THAN, JUMP TO B

A MOV R2,R3
B A R1,R3

CRU RelativeCRU RelativeCRU RelativeCRU Relative

The single bit CRU instructions, TB, SBO and SBZ are the only ones
to use CRU Relative addressing. The instructions contain a one
byte signed displacement. The displacement times two is added to
the CRU base address in workspace register 12 to form the full CRU
address of the bit being operated on.

CONTEXT SWITCHINGCONTEXT SWITCHINGCONTEXT SWITCHINGCONTEXT SWITCHING

A "context switch" takes place when the CPU begins executing an
independent piece of code. During the switch all the CPU's main
registers are saved and reloaded with new values. There are
several cases where this type of context switch is useful and
desirable.

The first case where this is useful, from a programming
standpoint, is a call to a separately assembled subroutine. The
BLWP instruction performs a context switch designed for subroutine
calls. The RTWP instruction reverses the switch and returns back
to the calling code.

Another case where a context switch is useful is when calling the
operating system to perform some service. The XOP instruction is
designed for just such a purpose.

Finally, when an interrupt from the video processor, an I/O
device, etc., occurs a context switch occurs.

The same mechanism is used for all these context switches. In all
cases, a new WP and a new PC are loaded from two consecutive words
of memory and then the old WP, old PC and old ST are saved in the
new workspace registers 13, 14 and 15. The two consecutive words
of memory that contain the new WP and PC values is called a
"context switch vector" or a "transfer vector".

The address of the transfer vector depends upon the cause of the
switch. The BLWP instruction contains the address of its transfer
vector. The XOP instruction contains a code value from 0 to 15
which is used to select one of the 16 transfer vectors that are
located in memory beginning at address >0040. As well as storing
the WP, PC and ST, the XOP also stores in the new workspace

TI 99/4A Macro Assembler - TMS 9900 REFERENCE 10

register 11 the effective address developed for the general
address specified in the instruction.

The type of interrupt being processed is used to select the
transfer vector from fixed addresses in memory.

 INT VECTOR INTERRUPT
LEVEL ADDR SOURCE
--
 0 >0000 External RESET
 1 >0004 External
 * >FFFC External, non-maskable

During interruption the ST is set to a value which will mask all
lower priority interrupts if they can be masked.

In all the context switches, a return to the previous context is
done with the RTWP instruction which restores the saved hardware
registers from workspace registers 13, 14 and 15.

AEMS MAPPERAEMS MAPPERAEMS MAPPERAEMS MAPPER

The AEMS card uses the Texas Instruments SN74LS612 memory mapper
chip along with additional logic to map the 32K memory addresses
from a 16 bit address to a 24 bit address. A 24 bit address
accommodates a 16 Megabyte memory.

This mapping is done by splitting the TI 99/4A 16 bit address into
two parts: a 4 bit page number and a 12 bit page offset. The 12
bit page offset gives a 4K page. The 4 bit page number is used to
select a "mapper register" containing a 12 bit extended page
number. The 12 bit extended page number is combined with the
original 12 bit page offset to give a 24 bit expanded memory
address.

The mapper can be inactive or active. When the mapper is inactive
the TI 99/4A will operate as though it had an ordinary 32K memory
card. At power on, the mapper is inactive.

The mapper is activated by setting a CRU bit (>1E04) to one. When
active, only addresses >2000 to >3FFF and >A000 to >FFFF are
mapped. Mapping can be turned off by setting the CRU bit to zero.

The mapper has 8 active "registers" that specify which pages are
mapped into the TI 99/4A's address space. In order to access
these registers (for write or read) the access must be enabled by
setting CRU bit >1E02 to one. Access is disabled by setting the
CRU bit to zero. The mapper registers are accessed as 16-bit
values by normal 9900 instructions at the following addresses:

TI 99/4A Macro Assembler - TMS 9900 REFERENCE 11

Register Access at Maps Page
 Number Address in at
 2 >4004 >2000
 3 >4006 >3000
 A >4014 >A000
 B >4016 >B000
 C >4018 >C000
 D >401A >D000
 E >401C >E000
 F >40F0 >F000

The access addresses will respond to instructions just like a
normal word of RAM.

Typical code for operation of the mapper is shown below.

* Load Mapper Registers
 LI R12,>1E02 CRU base address
 SBO 0 Enable register access
 LI R0,20 Page # 20
 MOV R0,@>4014 Map page in at >A000
 LI R0,50 Page # 50
 MOV R0,@>4016 Map page in at >B000
 SBZ 0 Disable register access
*
 SBO 1 Turn mapper on
 MOV @>A000,R0 Get 1st word page 20
 MOV @>B002,R1 Get 2nd word page 50
 SBZ 1 Turn mapper off

