

RAG SOFTWARERAG SOFTWARERAG SOFTWARERAG SOFTWARE

AEMS MACRO ASSEMBLERAEMS MACRO ASSEMBLERAEMS MACRO ASSEMBLERAEMS MACRO ASSEMBLER

USER'S GUIDEUSER'S GUIDEUSER'S GUIDEUSER'S GUIDE

 ==== ==== ==== ====
 ======== Asgard Macro Assembler ======== Asgard Macro Assembler ======== Asgard Macro Assembler ======== Asgard Macro Assembler
 ========== Expanded Version 1.1 ========== Expanded Version 1.1 ========== Expanded Version 1.1 ========== Expanded Version 1.1
 == AEMS == Memory R. A. Green == AEMS == Memory R. A. Green == AEMS == Memory R. A. Green == AEMS == Memory R. A. Green
 ========== System ========== System ========== System ========== System
 ======== ======== ======== ========
 ==== ==== ==== ====

The AEMS Macro Assembler is a full featured 9900 macro
assembler. It makes use of the memory available to assemble
large complex programs. Features include: macro definition and
expansion, compact listing format, symbol cross reference
listing, string and floating data types, COMMON data area
definition, complex relocation and page addresses.

This manual and the AEMS Macro Assembler program are
copyright (c) 1993 by RAG SOFTWARE.

CONTENTSCONTENTSCONTENTSCONTENTS

INTRODUCTION 1
RUNNING THE ASSEMBLER 1
 Assembler Input Screen 1
 The Object File 3
 Table Sizes 4
DIAGNOSING ASSEMBLER FAILURES 5
TECHNICAL MATERIAL 6
TAILORING THE ASSEMBLER 6

April 1993

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- User's Guide User's Guide User's Guide User's Guide 1

INTRODUCINTRODUCINTRODUCINTRODUCTIONTIONTIONTION

The assembler reads a source program, written in assembler
language, and translates it into an object program, in machine
language. The source program statements are read from the "source
file" which may be augmented by one or more "copy files". The
object program is written to the "object file". During assembly,
an "object listing file" can be created which shows the object
code generated along with the source statements.

Before the object program can be executed it must be loaded into
the computer's memory. The Assembler does not execute programs,
it simply translates them from assembler language to machine
language.

This package is being made available via the Fairware concept. If
you are using the package, send a donation to:

R. A. Green
1032 Chantenay Drive
Gloucester, Ont. Canada
K1C 2K9

And, at the same time, distribute complete copies of the package
to your friends.

RUNNING THE ASSEMBLERRUNNING THE ASSEMBLERRUNNING THE ASSEMBLERRUNNING THE ASSEMBLER

The RAG SOFTWARE AEMS Macro Assembler requires an Asgard Expanded
Memory System card and the AEMS system software. The Assembler is
run from filename AMAC1.

Assembler Input ScreenAssembler Input ScreenAssembler Input ScreenAssembler Input Screen

The Assembler screen is divided into three parts. The second part
contains six input fields labeled: "Printer", "Macros", "Options",
"Date", "Source", and "Object". The assembler returns to the input
fields after every assembly allowing you to do a batch of
assemblies at one time.

The "Printer" field specifies the name of the listing file to be
used if any listing options are selected.

The "Macros" field specifies the name of the macro library file to
be read prior to assembling the source. The macro file name may be
specified as an asterisk to indicate that the same macros are to
be used as for the previous assembly in the batch. A null entry
(i.e. all blank) indicates that no macro library file is required
for this assembly. The "Options" field specifies the options to be
used for this assembly. The options are specified as a sequence of
one letter option codes. Except for the "&" option, the codes may
be entered in any order. The option codes are:

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- User's Guide User's Guide User's Guide User's Guide 2

C - output the object file in compressed format.
E - output error messages to the printer file. If any other
 listing.
 option is selected then this option is assumed.
F - show full assembled data in the listing. If this option is not
 specified then a maximum of 6 bytes of data is shown on the
 listing (a single line) for BYTE, DATA, FLOAT, TEXT and STRI
 statements. The full data is, of course, always assembled into
 the object file.
G - include macro generated statements in the listing. The macro
 generated statements are identified in the listing by a plus
 sign following the statement number.
L - produce a listing of source statements.
M - include macro directives in the listing. Macro directives are
 identified in the listing by a minus sign preceding the
 statement.
R - define the register symbols R0 - R15.
S - produce a symbol table listing.
X - produce a cross-reference listing.
Y - produce a cross-reference listing of all symbols except the
 register symbols.
& - set the system macro symbol &S0 to the remainder of the
 options field.

The "Date" field can be used to enter up to 9 characters of
identification for this assembly. The information entered appears
in three places during the assembly: on the listing heading line,
on the last record of the object file, and as the value of the &S4
system macro symbol. As the field name suggests, today's date is
probably the most useful identification, then both the listing and
the object file will be dated.

The "Source" field specifies the name of the file containing your
assembler source statements.

The "Object" field specifies the name of the file into which your
object program is to be written.

The "Source" and "Object" fields are the only fields that must be
specified.

During data entry the function keys perform as ordinarily defined
by TI. In particular:

FCTN 1 (DEL) Delete character,
FCTN 2 (INS) Insert character,
FCTN 3 (ERASE) Erase to end of field,
FCTN 4 (CLEAR) Erase entire field,
FCTN 5 (BEGIN) Begin execution of function,
FCTN 6 (PROCD) Proceed with function,
FCTN 7 (AID) File name selection from directory,
FCTN 8 (REDO) Redo data in field,
FCTN 9 (BACK) Terminate function,

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- User's Guide User's Guide User's Guide User's Guide 3

FCTN = (QUIT) Quit the Assembler,
ENTER Move cursor to next field,
FCTN E (Up) Move cursor to previous field,
FCTN X (Down) Move cursor to next field,
FCTN S (Left) Move cursor left,
FCTN D (Right) Move cursor right.

When ENTER or FCTN X is pressed for the last field, the assembly
begins.

In the Directory Aid dialog box, the disk device name is entered
in the usual way, including hard disk sub-directories, with or
without the trailing period. The file name is selected by
scrolling the cursor up and down and then pressing ENTER. The
selected device and file name are placed in the input field.
Pressing BACK cancels the directory aid without a selection.

The dialog box may display an error message. Pressing any key
clears the message and returns to the input field.

The Object FileThe Object FileThe Object FileThe Object File

The object file output by the Assembler contains identification so
that the source, object and listing can be tied together. First,
the source file name is placed on the first object record, which
also contains the IDT information. Second, the last record of the
object file (the colon record) contains the Assembler
name/version, and the "Date" information that was entered.

The machine language object file created by the Assembler is a
FIXED 80 file containing "tagged object" in either compressed or
uncompressed format. The tagged object contains fields beginning
with a tag followed by data. The tag identifies the type of data
in the field. The first tag in an object program is either "0",
which indicates that the object code is in uncompressed format, or
">01", which indicates that the object code is in compressed
format.

In uncompressed format, each two byte data field is represented by
four hexadecimal digits. In compressed format, each two byte data
field contains the actual two bytes of data.

The following table lists the tags used and gives the content of
the data field that follows the tag.

TAG CONTENTS OF DATA FIELD.
--.
>01 2 Bytes, size of relocatable portion of program.
 8 Characters, text from the IDT Directive.
 0 2 Bytes, size of relocatable portion of program.
 8 Characters, text from the IDT Directive.
 1 2 Bytes, Entry point in absolute code.
 2 2 Bytes, Entry point in relocatable code.

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- User's Guide User's Guide User's Guide User's Guide 4

 3 2 Bytes, REF chain in relocatable code.
 6 Characters, REF name.
 4 2 Bytes, REF chain in absolute code.
 6 Characters, REF name.
 5 2 Bytes, DEF value in relocatable code.
 6 Characters, DEF name.
 6 2 Bytes, DEF value in absolute code.
 6 Characters, DEF name.
 9 2 Bytes, absolute location counter.
 A 2 Bytes, relocatable location counter.
 B 2 Bytes, absolute code.
 C 2 Bytes, relocatable code.
 F No data, end of object record.
 G 2 Bytes, Complex relocatable value.
 6 Characters, REF name.
 H Not implemented.
 I 2 Bytes, COMMON size.
 6 Characters, COMMON name.

The last record of an object file begins with a colon. It
contains only information on the Assembler name, version and the
"Date" information.

Note that if the object file contains a tag "G", "H" or "I" then
the object file cannot be loaded directly using any TI object
loaders. In this case the object file must be processed by the
AEMS Linker. If a tag "H" or "page number address" is used it
implies that the program can only run on a TI 99/4A equipped with
an AEMS card, and that it must be loaded with the AEMS program
loader.

Table SizesTable SizesTable SizesTable Sizes

The Assembler builds several tables during an assembly. Each of
the tables is described below.

The Symbol Table is used to save all symbols, macro names and
operation codes defined in the assembly. Each entry in the table
is 12 bytes. Two entries are made for each REF symbol. The symbol
table is up to 24K in size or 2047 entries.

The Cross Reference Table is used to accumulate the references to
each symbol in the assembly. The Y option excludes the register
symbols from cross referencing. Each entry in the table is 4
bytes. The cross reference table is up to 24K in size giving a
maximum of 6,140 entries.

The Macro Definition Table is used to save all macro definitions
encountered in the macro file or the source file. All the lines of
the macro definitions are stored as variable length strings with
the length byte preceding the statement. The macro table is up to
24K in size or large enough to hold the equivalent to a 96 sector
macro file.

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- User's Guide User's Guide User's Guide User's Guide 5

The OBJREC Directive Table is used to save the BEFORE text during
pass 1 and to save the AFTER text during pass 2. Each text entry
is stored as a variable length string with the length byte
preceding the text. The table size is 6,144 bytes, providing
enough space to hold about 150 40-byte object records.

DIAGNOSING ASSEMBLER FAILURESDIAGNOSING ASSEMBLER FAILURESDIAGNOSING ASSEMBLER FAILURESDIAGNOSING ASSEMBLER FAILURES

Every attempt has been made to insure that the Assembler has no
bugs, however, in every complex program the possibility of bugs
always exists. In addition, bugs may also exist in the
operating system facilities used by the Assembler. There are
three possible type of failures.

1. The Assembler completes normally, but some instruction or data
 was assembled incorrectly.
2. The Assembler completed, but the listing or disk files were
 incomplete or in error.
3. The Assembler did not complete and/or the system required
 rebooting.

In all three cases, the first thing to do is to correct all source
errors that were found by the Assembler. The Assembler can really
only correctly assemble correct programs, although it tries to
diagnose incorrect statements. As the old saying goes: "Garbage in
equals Garbage out".

In the first case above, you should be sure that you understand
what should be assembled. The language supported is fully
described in the "Assembler Language Reference" document supplied
with the Assembler. The compatibility statement made in that
document is for information only and not as a definition of the
language supported. If the EQUV assembler directive and/or macro
definitions which test which pass the Assembler is in are used,
these should be checked carefully.

In the second and third cases above, either the Assembler or the
operating system may be suspect. In these cases, you should
reduce the dependency of the assembler on the operating system.
This can be done by not using any of the listing options.

Finally, all bugs discovered as well as any usability problems
should be reported to:

RAG SOFTWARE
R. A. Green.
1032 Chantenay Dr.
Gloucester, Ont.
CANADA K1C 2K9

If possible, a disk with the source program that can not be
assembled should be sent. This will make finding the bug easier.

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- User's Guide User's Guide User's Guide User's Guide 6

If a disk is sent, the material on the disk will &only be used for
finding the bug and will be returned with a corrected version of
the assembler.

TECHNICAL MATERIALTECHNICAL MATERIALTECHNICAL MATERIALTECHNICAL MATERIAL

The documentation distributed with the Assembler consists of three
manuals:

AMACLR/D - Assembler Language Reference
AMACMR/D - Macro Reference and Tutorial
AMAC99/D - 9900 CPU Reference

which can be printed with the TI Writer Formatter.

More information on the hardware and programming the computer
can be obtained in other publications such as those listed below.

1. TMS 9900 16-Bit Microcomputer
 Preliminary Data Manual
 Texas Instruments, Inc., 1981

2. Texas Instruments Home Computer
 Editor/Assembler
 Texas Instruments, Inc., 1981

3. Introduction to Assembly Language for the TI Home Computer
 Ralph Molesworth, 1983
 Steve Davis Publishing
 P.O. Box 190831
 Dallas, Texas 75219
 ISBN 0-911061-01-0

4. Learning TI 99/4A Home Computer
 Assembly Language Programming
 Ira Mc Comic, 1984
 Wordware Publishing, Inc.
 Plano, Texas 75074
 ISBN 0-13-527862-7

5. Fundamentals of TI 99/4A Assembly Language
 M. S. Morley, 1984
 Tab Books, Inc.
 Blue Ridge Summit, PA 17214
 ISBN 0-8306-1722-1

TAILORING THE ASSEMBLERTAILORING THE ASSEMBLERTAILORING THE ASSEMBLERTAILORING THE ASSEMBLER

The Assembler can be tailored in two ways to meet your
requirements. First, the initial contents of the input screen
areas can be specified and second, printer setup data can be
provided. This tailoring is done by applying patches to the
Assembler using the Z-AEMSPAT program supplied on the Assembler
distribution disks.

 AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler AEMS Macro Assembler ---- User's Guide User's Guide User's Guide User's Guide 7

The patches are easy to make. There are two model patch files on
the distribution disk one for the initial input screen contents
and one for the printer setup data. The two model files are those
that could be used to restore the Assembler to its "distribution"
state.

You simply modify either or both files with any editor and then
apply your patches by running the Z-AEMSPAT program, specifying
the names of your patch files.

The names of the patch files on the distribution disk are:

SRCDIST Input screen contents as distributed.
PRTDIST Generic printer setup data as distributed.
PRT10X Star Gemini 10X printer setup data.
PRTNX1000 Star NX1000 printer setup data.

