
 LINKER Interpolation - Page 21 et seq.

EXIT - Exit from program

Exits from a program and returns to the AEMS Loader. This is the
recommended way to end an AEMS program rather than using BLWP @0
or some other method.

FREE - Free AEMS pages

Frees a previously allocated block of pages for reuse.
Parameters:
 pageno - number of the first page of the block
 npages - number of pages to free

MOVE - Move data in RAM

Moves data from one page to another. The pages need not be
mapped into the 4A's address space.
Parameters:
 Fpageno - from extended page number
 Foffset - offset in the from page
 Tpageno - to extended page number
 Toffset - offset in the to page
 length - length in bytes of data

VREAD - Read from VDP

Reads data from the VDP into a page of extended memory. The
page need not be mapped into the 4A's address space.
Parameters:

 Vaddr - VDP address
 pageno - extended page number
 offset - offset within the page
 length - length in bytes of data

VSET - Setup VDP

Loads VDP registers and tables for "standard" modes.
Parameters:
 Mode - 0 - graphics mode
 1 - text mode
 2 - XB graphics mode
 Chars - 0 - standard character set
 1 - true lower case letters

VWRITE - Write to VDP

Writes data to the VDP from a page of extended memory. The page
need not be mapped into the 4A's address space.
Parameters:
 Vaddr - VDP address
 pageno - extended page number
 offset - offset within the page
 length - length in bytes of data

 LINKER Interpolation - Page 21 et seq.

......................
 >05 Load into GRAM 4 at >8000.
 >06 Load into GRAM 5 at >A000.
 >07 Load into GRAM 6 at >C000.
 >08 Load into GRAM 7 at >E000.
 >09 Load into ROM BANK 1 at >6000.
 >0A Load into ROM BANK 2 at >6000.
 >A0 AEMS non-overlay program or overlay root.
 >A1 AEMS overlay segment.

Standard program files consist of the exact contents of memory
written to a disk. A memory image program may be split into two
or more segments depending upon the length of the program. Each
of the segments is written to a separate disk file. Option 3 of
TI WRITER will load a segment with a maximum size of >2000 while
Option 5 of Editor/Assembler will load a segment with maximum
size of >2400 bytes. LINKER produces segments with a maximum
length of >1FFA. The name of the first segment is specified and
the names for all following segments is derived by adding 1 to
the last byte of the name of the previous segment. Each memory
image file has a 3 word (or 6 bytes) header that indicates to a
loader where in memory to load the program. The header is:

WORD 1 Flag word as described above.
WORD 2 Length of code in this segment in bytes. Note that the
 length of the segment on disk is 6 bytes more to include
 the 6 bytes of header information.
WORD 3 Address at which this segment is to be loaded.

NOTE that the length of the memory image program may not be the
same as the length of the tagged object program. This can be
caused by a work area that has no code or data loaded into it
occurring at the end of the program. LINKER will not waste disk
space writing out an area that you have not filled with code or
data. In fact, if your program contains areas inside the
program that are unused and which exceed 518 bytes in size
LINKER will break the program at that point and create two
separate segments. The 518 bytes is the overhead for creating
another file -- 1 sector for the disk catalog, 1 sector minimum
for a file and 6 bytes of header information per file.

The AEMS Program File format is a bit more complicated than the
standard in order to accomadate the much larger memory size and
features of the AEMS system.

The header for an AEMS program or root segment of an overlay
program is as follows.

WORD 1 Flag >FFA0 or >00A0.
WORD 2 Length of code in this segment in bytes.
WORD 3 Address at which this segment is to be loaded.
WORD 4 Total number of pages of memory required for the overlay
 program. This number does not include the two pages at

 LINKER Interpolation - Page 21 et seq.

 >2000 and >3000. If this number is zero then the
 program is not an overlay program.
WORD 5 Number of bytes in the "page relocation table" which
 begins at WORD 6. This may be zero.
WORD 6 If there are page relocation entries (WORD 5 is non-zero)
 then each word in the table is the address of a word
 containing a "relative page number" which is to be
 relocated.

Note that there may be more than one root segment in a program
and that the root segment may be loaded in the high memory area
>A000 to >FFFF. If there is more than one root segment WORD 4
(number of pages required) will be identical in all segments.
It is redundant in all but the first segment.

The header for an AEMS overlay segment is as follows.

WORD 1 Flag >FFA1 or >00A1.
WORD 2 Length of code in this segment in bytes.
WORD 3 Address of this segment when it is mapped in for
 execution. The last 12 bits of this address is the
 offset within the relative page at which this segment is
 loaded.
WORD 4 Relative page number of this segment.
WORD 5 Number of bytes in the "page relocation table" which
 begins at WORD 6. This may be zero.
WORD 6 If there are page relocation entries (WORD 5 is non-zero)
 then each word in the table is the address of a word
 containing a "relative page number" which is to be
 relocated.

Note that an overlay segment may be more than one page in
length.

Overlay Code

The "Overlay Manager" code shown below is added to the root
segment of a program by the LINKER.

 * Map in N sequential pages and
 * simulate BLWP call to subroutine.
 *
 OVMGR SBO 0 enable mapper regs
 MOV *R11+,R10 Get N, # pages
 MOV *R11+,R9 Get 1st mapper reg
 MOV *R11+,R7 Get 1st page #
 OVMGR2 MOV R7,*R9+ Set mapper reg
 INC R7 Incr page #
 DEC R10 Loop for N pages
 JGT OVMGR2
 SBZ 0 Disable mapper regs
 MOV *R11,*R11 Get real BLWP vector
 MOV *R11+,R7 Get WSP
 MOV *R11,R9 Get branch addr

 LINKER Interpolation - Page 21 et seq.

 MOV R13,@26(R7) Simulate BLWP
 MOV R14,@28(R7)
 MOV R15,@30(R7)
 OVMGRW EQU $-12 OVMGR workspace
 * CALL user subroutine.
 LWPI 0 R6,R7 Load user WSP
 B @0 R8,R9 Go to user sub
 BSS 2 R10
 BSS 2 R11
 DATA >1E00 R12 Mapper CRU addr
 BSS 6 R13-R15

Shown below is the "stub" inserted by the LINKER for each
subroutine call that causes an overlay.

 OSUB DATA OVMGRW Overlay Manager
 DATA $+2.
 BL @OVMGR Call manager
 DATA N # pages in overlay
 DATA >400X 1st mapper reg addr
 DATA n 1st page number
 DATA sub real BLWP vector

AEMS Mapper

AEMS uses the Texas Instruments SN74LS612 memory mapper chip
along with additional logic to map the high memory addresses
from a 16 bit address to a 23 bit address. A 23 bit address
accommodates a 4 Megabyte memory.

This mapping is done by splitting the TI 99/4A 16 bit address
into two parts: a 4 bit page number and a 12 bit page offset.
The 12 bit page offset gives a 4K page. The 4 bit page number
is used to select a "mapper register" containing an 11 bit page
number. The 11 bit expanded page number is combined with the
original 12 bit page offset to give a 23 bit expanded memory
address.

The mapper can be inactive or active. When the mapper is
inactive the TI99/4A will operate as though it had an ordinary
32K memory card. At power on, the mapper is inactive.

The mapper is activated by setting a CRU bit (>1E02) to one.
When active only addresses >A000 to >FFFF are mapped. Mapping
can be turned off by setting the CRU bit to zero.

The mapper has 6 active "registers" that specify which pages are
mapped into the TI99/4A's address space. In order to access
these registers (for write or read) the access must be enabled
by setting CRU bit >1E00 to one. Access is disabled by setting
the CRU bit to zero. The mapper registers are accessed by
normal 9900 instructions at the following addresses:

 LINKER Interpolation - Page 21 et seq.

Register Access at Maps Page
 Number Address in at
 A >40A0 >A000
 B >40B0 >B000
 C >40C0 >C000
 D >40D0 >D000
 E >40E0 >E000
 F >40F0 >F000

The access addresses will respond to instructions just like a
normal word of RAM.

Typical code for operation of the mapper is shown below.

* Load Mapper Registers
 LI R12,>1E00 CRU base address
 SBO 0 Enable register access
 LI R0,20 Page # 20
 MOV R0,@>40A0 Map page in at >A000
 LI R0,50 Page # 50
 MOV R0,@>40B0 Map page in at >B000
 SBZ 0 Disable register access
 SBO 1 Turn mapper on
 MOV @>A000,R0 Get 1st word page 20
 MOV @>B002,R1 Get 2nd word page 50
 SBZ 1 Turn mapper off

Only in special cases should the programmer have to manipulate
the mapper or its registers directly. Assembler macros and
library routines are provided for most routine tasks.

AEMS LIBRARY MANAGERAEMS LIBRARY MANAGERAEMS LIBRARY MANAGERAEMS LIBRARY MANAGER

The AEMS Library Manager is a program to assist you to build and
maintain libraries of routines for use by the LINKER.

