

RAG SOFTWARERAG SOFTWARERAG SOFTWARERAG SOFTWARE

AEMS MACRO ASSEMBLERAEMS MACRO ASSEMBLERAEMS MACRO ASSEMBLERAEMS MACRO ASSEMBLER

MACRO DESCRIPTIONS AND MACRO WRITINGMACRO DESCRIPTIONS AND MACRO WRITINGMACRO DESCRIPTIONS AND MACRO WRITINGMACRO DESCRIPTIONS AND MACRO WRITING

 ==== ==== ==== ====
 ======== Asgard Macro Assembler ======== Asgard Macro Assembler ======== Asgard Macro Assembler ======== Asgard Macro Assembler
 ========== Expanded Version 1 ========== Expanded Version 1 ========== Expanded Version 1 ========== Expanded Version 1
 == AEMS == Memory R. A. Green == AEMS == Memory R. A. Green == AEMS == Memory R. A. Green == AEMS == Memory R. A. Green
 ========== System ========== System ========== System ========== System
 ======== ======== ======== ========
 ==== ==== ==== ====

CONTENTSCONTENTSCONTENTSCONTENTS

MACRO DESCRIPTIONS 1
 BE Branch Equal 2
 BNE Branch Not Equal 2
 CALL Call Subroutine 2
 IF If Word Jump 2
 IFB If Byte Jump 2
 IFSW If Switch Jump 3
 LDB Load Byte 3
 MOVBL Move Bytes Long 3
 RCALL Call Subroutine 4
 SETSW Set Switch 4
 SETV Set VDP Address 4
DEVELOPING MACROS 5

This manual and the TI 99/4A Macro Assembler program are
copyright (c) 1993 by RAG SOFTWARE.

January 1993

 AEMS Macro AssemblerAEMS Macro AssemblerAEMS Macro AssemblerAEMS Macro Assembler 1

MACRO DESCRIPTIONSMACRO DESCRIPTIONSMACRO DESCRIPTIONSMACRO DESCRIPTIONS

The following sections describe the use of the macros in the
ARAGMAC macro library. These are general purpose macros.

[label] BE gad Branch Equal
[label] BNE gad Branch Not Equal
[label] CALL gad,p1,p2,p3,p4 Call Subroutine
[label] IF gas,relop,gad,target IF word
[label] IFB gas,relop,gad,target IF Byte
[label] IFSW gas,{ON|OFF},target IF Switch
[label] LDB gas,wad Load Byte
[label] MOVBL gas,gad,length MOVe Bytes Long
[label] RCALL gad,R0=p0,R1=p1,R2=p2 Call Subroutine
[label] SETSW gad,{ON|OFF} Set Switch
[label] SETV gas[,wad][,NOP] SET Vdp address

 AEMS Macro AssemblerAEMS Macro AssemblerAEMS Macro AssemblerAEMS Macro Assembler 2

BE BE BE BE ---- Branch Equal Branch Equal Branch Equal Branch Equal

 [label] BE destination [comment]

Causes a branch to the destination if the EQ status is set. The
destination operand is coded as a general address.
Examples:

 BE @GOOD
TEST BE *R8

BNE BNE BNE BNE ---- Branch Not Equal Branch Not Equal Branch Not Equal Branch Not Equal

 [label] BNE destination [comment]

Causes a branch to the destination if the EQ status is not set.
The destination operand is coded as a general address.
Examples:

 BNE @GOOD
TEST BNE *R8

CALL CALL CALL CALL ---- Call Subro Call Subro Call Subro Call Subroutineutineutineutine

 [label] CALL destination,p1,p2,p3,p4 [comment]

Causes a BLWP to the destination subroutine and generates a
parameter list following the BLWP for the parameters "p1" to
"p4". All parameters are optional and DATA statements are
generated only for as many parameters as are specified.
Examples:

 CALL @DSRLNK,8
CSUB1 CALL @SUB1,PARM1,PARM2,PARM3

IF IF IF IF ---- IF Word Jump IF Word Jump IF Word Jump IF Word Jump

 [label] IF source,relop,destination,target [comment]

Compares the word at "source" to the word at "destination" then
jumps to label "target" depending upon the "relop". The
relational operator "relop" is any of the jump conditions (i.e.
EQ for JEQ, H for JH, etc.). The source and destination operands
are coded as general addresses, OR the destination may be coded
as a literal value and the source as a register value. A
literal is written as an equals sign followed by a self defining
value. When a literal destination is coded, a CI instruction is
generated.
Examples:

 IF @X,EQ,*R5+,EQUAL
TEST IF *R3,GT,@Y,GREAT
 IF R4,EQ,=10,EQUAL R4 = 10?

IFB IFB IFB IFB ---- IF Byte Jump IF Byte Jump IF Byte Jump IF Byte Jump

 [label] IFB source,relop,destination,target [comment]

 AEMS Macro AssemblerAEMS Macro AssemblerAEMS Macro AssemblerAEMS Macro Assembler 3

Compares the byte at "source" to the byte at "destination" then
jumps to label "target" depending upon the "relop". The
relational operator "relop" is any of the jump conditions (i.e.
EQ for JEQ, H for JH, etc.). The source and destination operands
are coded as general addresses.
Examples:

 IFB @X,EQ,*R5+,EQUAL
TEST IFB *R3,GT,@Y,GREAT

IFSW IFSW IFSW IFSW ---- IF Switch Jump IF Switch Jump IF Switch Jump IF Switch Jump

 [label] IFSW source,{ON|OFF},target [comment]

Tests the switch "source" and jumps to label "target" depending
upon whether the switch is ON or OFF. The source operand is
coded as the general address of the switch word. A switch is ON
if the value of the word is non-zero and is OFF if the word is
zero. Switches can be set with the SETSW macro described later.
Examples:

 IFSW @SW1,ON,SW1ON
TEST IFSW *R3,OFF,SKIP

LDB LDB LDB LDB ---- Load Byte Load Byte Load Byte Load Byte

 [label] LDB source,destination

Loads the "source" byte as a word into the "destination"
register. The "source" operand is specified as a general
address. The "destination" operand must be a workspace register.
Examples:

LOAD LDB @A,R1
 LDB R1+,R4

MOVBL MOVBL MOVBL MOVBL ---- Move Bytes Long Move Bytes Long Move Bytes Long Move Bytes Long

 [label] MOVBL source,destination,length [comment]

Moves the bytes from "source" to "destination". The number of
bytes moved is specified by "length" which may be the general
address of the word containing the length or may be a literal
length. A literal is written as an equals sign followed by a
self defining value. This macro generates a loop to move the
bytes. The "source" and "destination" operands are coded as
general addresses. If "source" is specified as a symbolic memory
reference then R0 is used. If "destination" is specified as a
symbolic memory reference then R1 is used. If "length" is
specified as a symbolic memory reference or a literal then R2 is
used.
Examples:

 AEMS Macro AssemblerAEMS Macro AssemblerAEMS Macro AssemblerAEMS Macro Assembler 4

 MOVBL @X,@Y,@LEN
MXY MOVBL @X,@Y,=32
 MOVBL *R5+,*R7+,R3
 MOVBL *R10,@X,=20

RCALL RCALL RCALL RCALL ---- Call Subroutine Call Subroutine Call Subroutine Call Subroutine

 [label] RCALL destination,R0=p0,R1=p1,R2=p2 [comment]

Causes the specified registers to be loaded using LI
instructions and a BLWP to the "destination" subroutine. All
parameters are optional and LI instructions are generated only
for those parameters specified.
Examples:

 RCALL @VMBW,R0=VADDR,R1=CADDR,R2=20
VREAD RCALL @VSBR,R0=>0020

SETSW SETSW SETSW SETSW ---- Set Switch Set Switch Set Switch Set Switch

 [label] SETSW gad,{ON|OFF}

Sets the switch word specified by the general address "gad" ON
or OFF. The switch value for OFF is zero (set via the CLR
instruction). The switch value for ON is non-zero (set by the
SETO instruction).
Examples:

 SETSW @SW1,ON
SET SETSW *R3,OFF

SETV SETV SETV SETV ---- Set VDP Address Set VDP Address Set VDP Address Set VDP Address

 [label] SETV gas[,wad],[NOP]

Sets the VDP address specified by "gas". If gas is a symbolic
memory address or a literal then R0 is used. If specified, "wad"
is a register that has the VDP write address address,>8C02. If
specified, NOP, indicates that a NOP instruction should be
generated after the VDP address is set.
Examples:

 LI R15,>8C02
 SETV =>0C00,R15
SET SETV R3
 SETV R3,R15,NOP

 AEMS Macro AssemblerAEMS Macro AssemblerAEMS Macro AssemblerAEMS Macro Assembler 5

DEVELOPING MACROSDEVELOPING MACROSDEVELOPING MACROSDEVELOPING MACROS

The macro library is a DISPLAY VARIABLE 80 file and can be
edited the same as an assembler source file. Note that the
order of the macros in the library is not important. When
developing a new macro you should place the macro definition in
your source file. Then when you are satisfied that the macro
works you should copy it to the macro file.

All macro definitions are kept in memory during assembly so that
the size and number of macro statements is limited. When you
copy your macro definitions to the macro library you should
"compress" them. That is you should remove all unnecessary
blanks and all comments. You should periodically review your use
of macros and remove from the library any that you find you are
not using.

The following discussion of macros is in the nature of a
tutorial on what a macro is, and how to develop one.

Let us try some analogies in order to get a feeling for what
macros are and how to make use of them. Like most analogies,
none of them are completely accurate.

 1. Macros are like subroutines, (generally very small
 subroutines),
 2. Macros are like COPY statements,
 3. Macros are like user defined functions in BASIC (i.e.
 DEF SQ(X)=X*X),
 4. Macros are like small programs that generate assembler
 source statements.

First, we will look at analogy number 1. Suppose that in a
program you had many places where you want to move 10 bytes of
data from one place in memory to another. You could code a
"MOVE" subroutine as shown below.

 Line/Pos 1234567890123456789012345678901234567890
 001 *...
 002 BL @MOVE
 003 *...
 004 BL @MOVE
 005 *...
 006 MOVE LI R0,X move 10 from x to y
 007 LI R1,Y
 008 LI R2,10
 009 MOVB *R0+,*R1+
 010 DEC R2
 011 JGT $-4
 012 RT
 013 X BSS 10
 014 Y BSS 10
 015 END

 AEMS Macro AssemblerAEMS Macro AssemblerAEMS Macro AssemblerAEMS Macro Assembler 6

Now, if you wanted extreme speed you would repeat the code in
lines 6 through 11 at line 2 then again at line 4 and so on for
every reference to MOVE. If you used your move subroutine a lot
of times in the program, this repetition would get tiresome.
With the macro assembler, you could define a macro and use it
wherever the move was needed. For example:

 Line/Pos 1234567890123456789012345678901234567890
 001 $MACRO MOVE BEGINNING OF DEFN
 002 LI R0,X move 10 from x to y
 003 LI R1,Y
 004 LI R2,10
 005 MOVB *R0+,*R1+
 006 DEC R2.
 007 JGT $-4
 008 $END END OF DEFN
 009 *...
 010 MOVE
 011 *...
 012 MOVE
 013 *...
 014 X BSS 10
 015 Y BSS 10
 016 END

When this code is assembled, the assembler stores away the macro
definition in lines 1 to 8, then later when it sees the macro
name, MOVE, used as an operation code in lines 10 and 12, it
substitutes the statements inside the macro definition into the
source.

Using analogy number 2, the above could be accomplished by
putting lines 2 through 7 into a file, say DSK1.MOVE and then
recoding the program as shown below.

 Line/Pos 1234567890123456789012345678901234567890
 009 *....
 010 COPY "DSK1.MOVE"
 011 *...
 012 COPY "DSK1.MOVE"
 013 *...
 014 X BSS 10
 015 Y BSS 10
 016 END

At this point, you should enter the above two source programs
and assemble them. Use options R (for registers), L (for
listing) and G (for show generated statements). Compare the two
listings and see what statements were actually assembled. Note
on the listing that plus signs precede statements generated by a
macro.

 AEMS Macro AssemblerAEMS Macro AssemblerAEMS Macro AssemblerAEMS Macro Assembler 7

The above example of the use of a macro is very trivial. So
trivial that you probably would not use a macro for this
purpose. Let's extend the example a bit more.

Suppose, that each time you wanted to use MOVE, you wanted to
move different strings of different lengths. Say the first time
you wanted to move 20 bytes of A to B and the second time you
wanted to move 10 bytes of X to Y. In this case, the "COPY"
solution would not work since the code copied from the file is
always the same, but it can be done with a macro.

Macros are like subroutines (i.e. CALL COLOR(...) in BASIC) in
that they can have parameters. One parameter is the symbol you
code in the label field of the macro statement. There are a
maximum of nine other parameters which are the values coded in
the operand field of the macro statement. The macro parameters
have fixed "special" names. The symbol "&P0" is the name of the
label field parameter, "&P1" is the name of the first operand,
"&P2" the name of the second operand, and so on up to "&P9".
When the assembler sees one of these special names within a
macro definition it substitutes the value specified on the macro
statement. Thus each time you code a macro statement (i.e. every
time you use the macro name as an operation code) with different
operands, different values are substituted and different
statements are "generated" by the macro. Let's now recode our
example.

 Line/Pos 1234567890123456789012345678901234567890
 001 $MACRO MOVE BEGINNING OF DEFN
 002 &P0 LI R0,&P1 &P1 IS FROM
 003 LI R1,&P2 &P2 IS TO
 004 LI R2,&P3 &P3 IS LENGTH
 005 MOVB *R0+,*R1+
 006 DEC R2
 007 JGT $-4
 008 $END END OF DEFN
 009 *...
 010 MOVE A,B,20
 011 *...
 012 NEXT MOVE X,Y,10
 013 *...
 014 A BSS 20
 015 B BSS 20
 016 X BSS 10
 017 Y BSS 10
 018 END

At this point you should enter and assemble the above example
using the RLG options. In the listing you can see that "A" was
substituted for "&P1" in the first generation for MOVE and that
"X" was substituted in the second generation. Note also that the
label coded on line 12 is substituted for "&P0".

 AEMS Macro AssemblerAEMS Macro AssemblerAEMS Macro AssemblerAEMS Macro Assembler 8

Now our macro has become less trivial and considerably more
useful. It is still a simple use of macros. Let's take our macro
one step Further. Suppose that the length of the move in line 10
was calculated by some other part of the program and was stored
at "LNGT". Then we would want the macro to generate the
statement
 MOV @LNGT,R2.
instead of
 LI R2,20

for line 10, but to generate the same code as before for line
12. The following example accomplishes this.

 Line/Pos 1234567890123456789012345678901234567890
 001 $MACRO MOVE BEGINNING OF DEFN
 002 &P0 LI R0,&P1 &P1 IS FROM
 003 LI R1,&P2 &P2 IS TO
 004 $IF '&P3(1.1)',EQ,'@',GENMOV
 005 LI R2,&P3 &P3 IS LENGTH
 006 $GOTO COMMON
 007 $LABEL GENMOV
 008 MOV &P3,R2 &P3 IS @LENGTH
 009 $LABEL COMMON
 010 MOVB *R0+,*R1+
 011 DEC R2
 012 JGT $-4
 013 $END END OF DEFN
 014 *...
 015 MOVE A,B,@LNGT
 016 *...
 017 NEXT MOVE X,Y,10
 018 *...
 019 A BSS 20
 020 B BSS 20
 021 X BSS 10
 022 Y BSS 10
 023 LNGT BSS 2
 024 END

Again, you should enter and assemble this example.

This example shows how macros are like programs that generate
assembler statements (analogy number 4). At line 4 in the macro
definition, the $IF macro directive tests if the first character
of the third operand is an at sign (indicating that the number
of bytes to move is in storage). If it is an at sign, the MOV
instruction at line 8 is generated, otherwise, the LI at line 5
is generated and the $GOTO directive causes generation to
continue with the code common to both options.

Line 4 uses "substring notation". The bracketed numbers
following &P3 tell the assembler to substitute only part of the
third operand. Substring notation is similar to the BASIC

 AEMS Macro AssemblerAEMS Macro AssemblerAEMS Macro AssemblerAEMS Macro Assembler 9

SEG$(&P3,1,1). Note, however, that a period is used between the
two numbers.

We now have a fairly complex macro that could be useful in many
different programs. You could at this point put the definition
(lines 1 to 13) in your macro library and then use the MOVE
macro in all your programs just as though it were an ordinary
operation code.

Let's not stop yet though. Let's extend the macro some more.
First, read the description of the MOVBL macro given earlier in
the manual. Now, modify your MOVE macro to function like MOVBL.
Give it some thought before you peek at the definition given in
the macro library on the assembler disk. Try assembling a few
MOVBL macros (with the RGL options) and see what code is
generated.

