

RAG SOFTWARERAG SOFTWARERAG SOFTWARERAG SOFTWARE

AEMS PROGRAM LINKER V1AEMS PROGRAM LINKER V1AEMS PROGRAM LINKER V1AEMS PROGRAM LINKER V1

 ==== ==== ==== ====
 ======== Asgard Linker ======== Asgard Linker ======== Asgard Linker ======== Asgard Linker
 ========== Expanded Version 1.0 ========== Expanded Version 1.0 ========== Expanded Version 1.0 ========== Expanded Version 1.0
 == AEMS == Memory R. A. Green == AEMS == Memory R. A. Green == AEMS == Memory R. A. Green == AEMS == Memory R. A. Green
 ========== System ========== System ========== System ========== System
 ======== ======== ======== ========
 ==== ==== ==== ====

The AEMS LINKER is part of a series of programmer tools from RAG
Software designed for the Asgard Expanded Memory System (AEMS).
The AEMS provides a large paged memory for the TI 99/4A. The
LINKER takes advantage of this large memory and provides
significant facilities so that other programs and programmers can
take advantage of the memory.

CONTENTSCONTENTSCONTENTSCONTENTS

INTRODUCTION 1
DISK CONTENTS 2
FAIRWARE 2
TAILORING THE LINKER 2
RUNNING THE AEMS LINKER 3
LINKER INPUT 5
NOTATION 6
LINKER EXPRESSIONS 6
LINKER ORIGIN 6
LINKER CONTROL STATEMENTS 7
 The LOAD Statement 8
 The LIBRARY Statement 8
 The ENTRY Statement 9
 The BLOCK Statement 9
 The EQU Statement 10
 The FLAG Statement 11
 The ORIGIN Statement 11
 The OVERLAY Statement 12
 The PATCH Statement 13
 The VERIFY Statement 13
 The COMMON Statement 14
OVERLAY PROGRAMS 14
SUBROUTINE LIBRARIES 20
SYSTEM INFORMATION 21
 Object Files 21
 Program Files 21
 Overlay Code 23
 AEMS Mapper 24
THE AEMS LOADER 26
EXAMPLES 27
 EXAMPLE 1 27
 EXAMPLE 2 28
 EXAMPLE 3 29
 EXAMPLE 4 30
 EXAMPLE 5 31
 EXAMPLE 6 32
 EXAMPLE 7 33
 EXAMPLE 8 34
 EXAMPLE 9 35
 EXAMPLE 10 36

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 1

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION

The AEMS LINKER is a tool for building assembler language program
files from tagged object. It makes this process simple and
straight forward. LINKER's main features are:

1. tagged object modules may be compressed and/or
 uncompressed,
2. tagged object modules may be absolute or relocatable and
 may contain complex relocatable values,

3. a library search can be done to resolve REFs,
4. a listing can be produced containing object information,
 memory maps and REF/DEF cross-references,

5. the program file can be built to load anywhere in the TI
 99/4A's 64K address space and/or can be built to operate in
 overlay mode using the AEMS paged memory.

The AEMS LINKER is upward compatible with the RAG Software TI
99/4A LINKER. The LINKER requires the AEMS in order to run. The
LINKER has four modes of operation depending upon the type of
input in its control file.

1. Automatic. A single tagged object file is processed, a
 single library file is searched if necessary and a program
 file is produced. The program file will load as if the
 tagged object had been loaded by the E/A loader,
 excluding the E/A routines in low memory. That is, the
 object is loaded first in the 24K high memory block,
 then into the 8K low memory block.

2. Semi-automatic. A control file is processed which names
 one or more tagged object files to be processed and names
 one or more libraries to be searched. The resulting
 program file will load as if the tagged object had
 been loaded by the E/A loader, excluding the E/A
 routines in low memory. That is, the object is loaded
 first in the 24K high memory block, then into the 8K low
 memory block.

3. Complete Programmer Control. A control file is processed
 which names one or more tagged object files to be
 processed, names one or more libraries to be searched
 and which designates the memory layout for the resulting
 program file.

4. Overlay Mode. A control file is processed which names
 the tagged object files to be processed, names library
 routines to be processed and designates the memory layout
 and overlay structure for the resulting program file.

When operating in modes 1 to 3 LINKER can be directed to output
"standard" E/A Option 5 programs, and is compatible with the TI
99/4A linker. LINKER normally outputs program files that must be
loaded and executed using the AEMS Loader.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 2

DISK CONTENTSDISK CONTENTSDISK CONTENTSDISK CONTENTS

The distribution disk is a double sided single density disk
containing the following files.

1ST/README A few notes.
2/HISTORY A short history of Linker releases.
ALNK1 The AEMS LINKER program.
ALNK2 The second segment of LINKER.
ALNKDOC The documentation for LINKER to be printed by the TI
WRITER formatter.
ALNKDOC1 Continuation of the documentation.
ALNKDOC2 Continuation of the documentation.
ALNKDOC3 Continuation of the documentation.
ALNKDOC4 Continuation of the documentation.
ALNKDOC5 Continuation of the documentation.
PRT10X Patch file for Gemini 10X printer setup.
PRTDIST Patch file for Generic printer setup (as distributed).
PRTNX1000 Patch file for Star NX1000 printer setup.
SCRDIST Patch file for main screen default values (as
 distributed).
RAGLIB A library of routines similar to those provided by the
 E/A, MM or XB for "standard" memory programs.
ZAEMSPAT/D Documentation for ZAEMSPAT.
ZAEMSPAT Public Domain program file patcher.

FAIRWAREFAIRWAREFAIRWAREFAIRWARE

This package is being made available via the Fairware concept. If
you like the package and are using it, send a donation to:

R. A. Green
1032 Chantenay Drive
Gloucester, Ont. Canada
K1C 2K9

And, at the same time, distribute complete copies of the package
to your friends. If you have any suggestions for improvements or
have found any bugs please forward them to the above address.

TAILORING THE LINKERTAILORING THE LINKERTAILORING THE LINKERTAILORING THE LINKER

The LINKER is designed to work only on AEMS systems. It can be
tailored to support various printers and to set the default
processing options. Several patch files are provided on the disk
which you can modify for your printer and main menu options. Two
patch files, PRTDIST and SCRDIST will reset the linker to its
original distributed state. Comments within the supplied patch
files make modifying them for your setup easy.

You need read only enough of the PATCH program documentation to be
able to run the patch program. Creating patches for a program is

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 3

fairly complex, but the patches here are already created by the
author of the Linker, you need only modify them and run the patch
program to apply them.

In order to produce a compact listing the printer should be set up
to print in elite mode at 8 lines per inch. Most printers can do
this although it is not required. To accomplish this printing, the
LINKER will send a "setup sequence" of control characters to the
printer before printing the first line of the listing, and will
send a "reset sequence" of control characters to the printer after
printing the last line of the listing. The LINKER will truncate
any lines that are too long for the printer and will count the
number of lines per page. The length of a line and the number of
lines per page must be coordinated with the way your printer is
set up.

The LINKER, as distributed, is set up for a generic printer and
should work with any printer.

RUNNING THE AEMS LINKERRUNNING THE AEMS LINKERRUNNING THE AEMS LINKERRUNNING THE AEMS LINKER

The RAG Software AEMS LINKER must be run using the AEMS Loader.
The file name of the LINKER is ALNK1.

Linker Input ScreenLinker Input ScreenLinker Input ScreenLinker Input Screen

The Linker screen is divided into three parts. The second part
contains five input fields labeled: "Printer", "Library",
"Options", "Control", and "Program". The Linker returns to the
input fields after linking a program allowing you to do a batch of
links at one time.

The "Printer" field specifies the name of the listing file to be
used if any listing options are selected.

The "Library field specifies the name of the final library to be
searched for unresolved REFs. A null entry means no library is to
be searched. If there are no unresolved REFs at the end of a
program, or if an overlay program is being linked, then this
library is not used.

The "Options" field specifies the options to be used for this
linker run. The options are specified as a sequence of one letter
option codes. The codes may be entered in any order. The option
codes are:

L - produce a listing of control statements and other optional
 data,
F - show full information in the listing about each tagged object
 module processed,
M - include in the listing a memory map of the memory image
 program,

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 4

X - include in the listing a cross-reference listing of all REFs
 and DEFs,
O - The program is being linked for overlay mode operation,
S - The output program file should be written as a standard E/A
 Option 5 program file.

The "Control" field specifies the name of your control file or of
the single object file that you want processed.

The "Program" field specifies the name of the program file into
which the Linker output is written. If required, more than one
file may be written. The names for the second and following files
are generated by incrementing the last byte of the given name.

The "Control" and "Program" fields are the only fields that must
be specified.

Data EnData EnData EnData Entrytrytrytry

During data entry the function keys perform as ordinarily defined
by TI. In particular,

FCTN 1 (DEL) Delete character,
FCTN 2 (INS) Insert character,
FCTN 3 (ERASE) Erase to end of field,
FCTN 4 (CLEAR) Erase entire field,
FCTN 5 (BEGIN) Begin execution of function,
FCTN 6 (PROCD) Proceed with function,
FCTN 7 (AID) File name selection from directory,
FCTN 8 (REDO) Redo data in field,
FCTN 9 (BACK) Terminate function,
FCTN = (QUIT) Quit the Assembler,
ENTER Move cursor to next field,
FCTN E (Up) Move cursor to previous field,
FCTN X (Down) Move cursor to next field,
FCTN S (Left) Move cursor left,
FCTN D (Right) Move cursor right.

When ENTER or FCTN X is pressed for the last field, the linking
begins.

In the Directory Aid dialog box, the disk device name is entered
in the usual way, including hard disk sub-directories, with or
without the trailing period. The file name is selected by
scrolling the cursor up and down and then pressing ENTER. The
selected device and file name are placed in the input field.
Pressing BACK cancels the directory aid without a selection.

The dialog box may display an error message. Pressing any key
clears the message and returns to the input field.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 5

MemorMemorMemorMemory Usagey Usagey Usagey Usage

The linker uses AEMS memory pages, one at a time for two purposes.
First, is the dictionary of REFs and DEFs. The dictionary maximum
size is 24K. Second is the memory image of the program being
linked. This memory image has a maximum size of 64K (the full
addressing range of the 4A). During processing of an overlay
program, overlay sections are written out as soon as they can be
and the pages reused.

If the cross-reference option, "X" is given, the size required for
the dictionary is increases considerably.

You may get three different messages from the LINKER about memory
usage. "MEMORY FULL!" indicates that all the AEMS memory is used.
"PROGRAM TOO LARGE" means that the program being linked is too
large (check the memory blocks specified). "DICTIONARY FULL!"
indicates that the dictionary is full, not specifying the "X"
option may help this.

LINKER INPUTLINKER INPUTLINKER INPUTLINKER INPUT

The LINKER has three types of input file. First, a control file
which is the only required input. The control file contains LINKER
control statements and/or tagged object modules. The control file
may be either VARIABLE or FIXED with a record length of 80. Tagged
object modules in the control file begin with the tag "0" or tag
>01 record and end with the colon record as is usual for object
modules.

Second, tagged object files. A tagged object file is the normal
output from an assembly. It ends with a record with a colon in
column 1. Two or more tagged object modules can be combined into
one file provided that all but the last colon record are deleted.
Tagged object files must be FIXED 80. Tagged object files may have
comment lines in them (which can be generated by the Assembler
OBJREC assembler directive). These comment lines begin with an
asterisk.

Third, library files. Library files are searched to resolve REFs.
Only the modules required are processed. Each tagged object
module in the library begins with one or more special header
records and is terminated via the usual colon record. The header
records are identified by a period in column 1. Beginning in
column 2 of the header record is a list of the names that can be
resolved by the module. The list contains 1 to 6 character names
separated by commas with no intervening blanks (the first blank
stops the scan of the header record). A name can not be started
on one header record and continued onto the next. Library files
are always FIXED 80.

The LINKER is a powerful tool so that describing its functions
sometimes gets complicated. At the same time, LINKER is easy to

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 6

use if not all of its function is required for the job. If you do
get bogged down in the following sections skip them and go
directly to the examples at the end. The first three or four
examples will show you how to do the easy things easily.

NOTATIONNOTATIONNOTATIONNOTATION

Throughout the remainder of this document, we will talk as though
the LINKER were actually loading the object programs. The LINKER
does not actually load the programs, it builds a program file that
must be loaded by some other means (ie. the AEMS Loader, Option 5
of E/A, Option 3 of TI WRITER). Speaking of the LINKER in this way
makes it easier to describe and to understand the functions of the
various control statements.

Programs processed by the linker can be subdivided logically into
sections and physically into file segments. The logical sections
are mainly in overlay programs. There is the "root section" of the
program which is not overlayed, and the "overlay sections" only
one of which is mapped into the address space at any one time. Due
to the size restrictions on PROGRAM files, each section of a
program may be written as one or more file segments.

LINKER EXPRESSIONSLINKER EXPRESSIONSLINKER EXPRESSIONSLINKER EXPRESSIONS

In the descriptions of the LINKER control statements, given below,
the term "linker expression" will be used. A linker expression is
a series of arithmetic operations on symbols and/or constants.
The operations: + (addition), - (subtraction), * (multiplication)
and / (division) are performed in a strict left to right sequence.
A symbol used in an expression must be the linker origin symbol,
"$", or must have been previously defined by appearing as a DEF in
an object module or as the second operand of an ORIGIN or EQU
statement. The value of a symbol is the address at which the
symbol is loaded. Constants may be written as decimal numbers
(138) as hexadecimal numbers (>8A) or as character strings ('HZ').

LINKER ORIGINLINKER ORIGINLINKER ORIGINLINKER ORIGIN

The LINKER maintains an "origin" which represents the location in
memory just past where the previous relocatable object module was
loaded, or represents the value assigned by an ORIGIN or OVERLAY
statement. The linker origin is always maintained on a word
boundary (i.e. the address is always even). The symbol "$"
represents this value in linker expressions. Loading absolute
object code has no effect on the linker origin.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 7

LINKER CONTRLINKER CONTRLINKER CONTRLINKER CONTROL STATEMENTSOL STATEMENTSOL STATEMENTSOL STATEMENTS

LINKER control statements are used to control the various
functions of the LINKER. They are entered into a control file via
an editor (either the TI WRITER or E/A editor will do). Control
statements are written beginning in column 1 as a control word
followed by one or more operands and then optionally followed by
comments. They are similar to an assembler language statement
except that there is no label field. The operands are separated
from the control word by one or more blanks. The operands are
separated by commas. The comments are separated from the operand
field by one or more blanks. In addition, comment lines which
begin with an asterisk in column 1 may be entered. In addition to
control statements, the control file may contain tagged object
modules.

EXAMPLE

* THIS IS A COMMENT LINE
LOAD DSK1.OBJ1 MAIN PROGRAM
LOAD DSK1.SUB1 SUBROUTINE
LOAD DSK1.SUB2 SUBROUTINE
| | | |
| | | Comment
| | Operand
| Control Word
Column 1

Some LINKER control statements require a file name. These file
names may be specified in any of three ways.

1. The full device/filename written in the usual TI fashion.
 Examples:

DSK1.OBJ1
DSK.diskname.OBJ1
WDS1.directory.OBJ1

 2. The disk number may be specified as an asterisk to indicate
 the same drive as specified for the control file. Example:

DSK*.OBJ1

 3. The entire device, device.diskname or device.directory may
 be replaced by an asterisk indicating the same device,
 device.diskname or device.directory as the control file.
 Example:

 *.OBJ1

Note that this same filename convention can be used on the Linker
input screen. Only the "Control" file name must be specified in
full.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 8

The LOAD StatementThe LOAD StatementThe LOAD StatementThe LOAD Statement

The LOAD control statement directs the LINKER to load tagged
object modules. The LOAD statement has two formats. When loading
an object file, the LOAD statement has a single operand, the name
of the file to be loaded. When loading a routine from an object
library the first operand is the library file name and the second
is the name of the routine to be loaded. Using the LOAD statement
to load library routines allows you to position the routines
relative to other code as opposed to the automatic library search
which usually positions routines at the end of a program. This
positioning can be important in overlay programs.

A LOAD statement is equivalent to placing the actual tagged object
modules into the control file.

Examples

LOAD DSK1.OBJECT1
LOAD DSK1.RAGLIB,VMBR Load from library
LOAD DSK2.OBJECT2
LOAD DSK*.OBJECT3 SAME DISK AS CONTROL FILE
LOAD DSK.DISKNAME.OBJECT4
LOAD *.OBJECT5

The DEFs from the tagged object modules are entered into the
LINKER's dictionary and may be used in expressions in following
LINKER control statements.

If the "F" option was specified, LINKER will display information
about the object modules loaded in the listing. The information
consists of a line giving the type of object (compressed,
uncompressed, relocatable or absolute) the size and address where
a relocatable module is loaded, and the IDT data that was
specified at assembly time. A line will be printed for each DEF
in the module giving its loaded memory address; a line will be
printed naming each REF in the module; and a line will be printed
for each COMMON defined in the module giving its size. The colon
record, which usually identifies the assembler which produced the
object module and any comment lines within the object file will
also be printed.

The LIBRARY StatementThe LIBRARY StatementThe LIBRARY StatementThe LIBRARY Statement

The LIBRARY control statement directs the LINKER to search the
named library file for any tagged object modules that contain DEFs
for any ¤tly unresolved REFs. Note that only REFs that are
currently unresolved will be searched for. If other tagged object
modules are loaded after the LIBRARY statement has been processed
that contain new REFs, these new REFs will remain unresolved
unless they are resolved from additional tagged object modules or
other LIBRARY searches. Usually then the LIBRARY statement will
follow the LOAD statements in a control file.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 9

Examples

LIBRARY DSK1.RAGLIB
LIBRARY DSK.DISKNAME.FILE
LIBRARY DSK*.LIB
LIBRARY *.LIBX

Note that one final library search may be done after the control
file has been processed. The library searched is the one
specified via the LINKER initial menu.

The ENTRY StatementThe ENTRY StatementThe ENTRY StatementThe ENTRY Statement

The ENTRY control statement is used to specify the entry point of
the program file. This is the point at which execution begins
when the program file is actually loaded. The ENTRY statement has
a single operand, a linker expression that specifies the entry
address.

The ENTRY statement is optional. The entry point for the program
is determined by the LINKER as follows (in lowest to highest
priority order):

 1. entry at the first byte loaded,
 2. entry as specified via the first tag 1 or tag 2 field
 processed (a tag 1 or tag 2 is generated when a symbol is
 named on the assembler END statement),
 3. entry as specified via the ENTRY control statement.

Note that standard E/A Option 5 program files, by definition,
begin execution at the first byte of the first segment. LINKER
will insure that this is the case by producing 2 or more segments
if necessary.

Examples

ENTRY SFIRST
ENTRY BEGIN
ENTRY BEGIN+>100

The BLOCK StatementThe BLOCK StatementThe BLOCK StatementThe BLOCK Statement

The BLOCK control statement is used to specify blocks of memory to
be used for automatic loading of relocatable tagged object.
(Absolute tagged object is, of course, loaded where it must be.)
The BLOCK statement has three operands: the block number, the
address of the beginning of the block and the size in bytes of the
block. All three operands may be linker expressions (although
they will usually be constants). The block address is adjusted
upwards to a word boundary if necessary. The LINKER can handle
four blocks of memory so that the block number (first operand)
must be in the range 1 to 4.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 10

The LINKER loads tagged object into the blocks of memory in a way
analogous to the way the E/A or Mini Memory loads tagged object.
It searches the memory blocks in order to find space to load the
object modules. Ordinarily, the BLOCK statements will precede the
LOAD statements in the LINKER control file. Note that if blocks
are re-specified or if two BLOCK statements specify the same or
overlapping memory blocks object modules could be loaded over top
of previously loaded modules.

Examples

* Block definitions for non-overlay programs
BLOCK 1,>A000,>6000 (HIGH MEMORY)
BLOCK 2,>2000,>2000 (LOW MEMORY)
BLOCK 3,>6000,0 (CARTRIDGE RAM)
BLOCK 4,>4000,0 (DSR RAM)
*
* Block definitions for overlay programs
BLOCK 1,>2000,>2000
BLOCK 2,>A000,>6000
BLOCK 3,>6000,0
BLOCK 4,>4000,0

The above examples are the block definitions that the LINKER has
when it begins executing depending upon whether or not the "O"
option is specified. Note that blocks 3 and 4 have a length of
zero so that nothing will be loaded in these blocks. In an overlay
program the block definitions are only used during processing of
the root section.

The EQU StatementThe EQU StatementThe EQU StatementThe EQU Statement

The EQU statement is used to define the value for a symbol. The
EQU statement has two operands. The first is a linker expression
that specifies the value to be assigned to the symbol that is the
second operand.

EQU statements in the control file could be used to define symbols
for REFs that would otherwise remain unresolved. For example,
suppose you have a relocatable object program that has REFs to the
standard routines VMBR and VMBW. Further suppose you want the
program to execute in the Extended BASIC environment using XB's
routines in low memory. The control file could be coded as shown
below.

EQU >2024,VMBW DEFINE XB'S VMBW
EQU >202C,VMBR DEFINE XB'S VMBR
LOAD DSK1.OBJECT THE PROGRAM

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 11

The FLAG StatementThe FLAG StatementThe FLAG StatementThe FLAG Statement

The FLAG control statement is used to change the second byte of
the program file flag word for standard E/A Option 5 program
files. The value for the flag byte is the only operand of the
statement. If no FLAG statement is used, the second flag byte
value will be >FF for all but the last segment of a program, and
will be >00 for the last segment. Section "Program Files" defines
the use and various values for the flag word of program files.
The main use for the FLAG statement is in linking GPL programs for
loading into a GRAM device.

Examples

FLAG >09 MODULE FOR ROM BANK 1
FLAG >01 MODULE FOR GRAM 0
FLAG >47

The ORIGIN StatementThe ORIGIN StatementThe ORIGIN StatementThe ORIGIN Statement

The ORIGIN control statement is used to specify the location in
memory for the next relocatable tagged object module to be loaded.
The ORIGIN statement cancels LINKER's automatic or semi-automatic
mode. Once an ORIGIN statement has been used, the LINKER no longer
searches the memory blocks for areas to load the object modules.
All modules are simply loaded sequentially from the specified
origin unless another ORIGIN or OVERLAY statement is encountered.

The ORIGIN statement has two operands. The first is a linker
expression that specifies the memory location. This location is
adjusted upwards to a word boundary if necessary. The second
operand is optional, if specified it must be a 1 to 6 character
name. This name is placed in the LINKER's dictionary just as DEFs
from object modules are. The value assigned to the symbol is the
value of the first operand. The symbol can be used to resolve
REFs.

Examples

ORIGIN >A000.
ORIGIN >2000,LOW DEFINE SYMBOL "LOW"
ORIGIN LOW+>1000 ORIGIN WILL BE >3000

It is important to remember that once an ORIGIN statement is used,
relocatable object modules are loaded sequentially in the TI 99/4A
64K address space (wrapping from >FFFF to >0000 if necessary). As
with the BLOCK statement, it is possible with the ORIGIN statement
to cause LINKER to load one object module over the top of another.
You are in complete control and must exercise that control.
LINKER assumes you know what you are doing. An ORIGIN statement
could precede each LOAD statement thus giving you complete control
of where each module is loaded.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 12

Absolute object modules or sections of modules which are absolute
are not affected by ORIGIN statements. They are always loaded at
the location specified in the object module.

ORIGIN statements should be used only in the root section of an
overlay program. The OVERLAY statement specifies the origin for
the overlay sections.

The OVERLAY StatementThe OVERLAY StatementThe OVERLAY StatementThe OVERLAY Statement

The OVERLAY control statement is used to specify the beginning of
a new overlay section of a program. The OVERLAY statement is only
allowed if the "O" option was specified on the LINKER input
screen. The OVERLAY statement has a single operand, the "overlay
level". The overlay level is a number in the range 1 to 9
specifying the level in the overlay tree. A description of program
overlay techniques and use of the OVERLAY statement is given later
in section "OVERLAY PROGRAMS".

Due to hardware requirements of the memory card the origin of each
overlay section must be on a 4K boundary. The OVERLAY statement
will adjust to a 4K boundary as required.

When an OVERLAY statement is encountered, three processing steps
are initiated.

First, the LINKER completes processing of the previous overlay (or
root) section of the program. Any unresolved REFs in that section
are assumed to be REFs to routines in the next higher level of
overlay. For each of these unresolved REFs an overlay stub is
built. The LIBRARY statement can precede the OVERLAY statement to
force the LINKER to resolve REFS for the previous section. If the
previous section was the root section then the "overlay manager"
code is also built.

The second processing step is to allocate any COMMON sections
defined in the previous section.

The third and final processing step is to adjust the linker
origin. The origin is aligned to the next 4K boundary greater than
or equal to the current linker origin excluding addresses >0000 to
>1FFF and/or >4000->9FFF.

The names of the stubs built by the Linker are the same as the
subroutine names except that they are in lower case.

Examples

OVERLAY 1
OVERLAY 2

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 13

The PATCH StatementThe PATCH StatementThe PATCH StatementThe PATCH Statement

The PATCH control statement can be used to make patches to the
loaded program. The PATCH statement has two operands. The first is
the location to be patched specified as a linker expression. The
second operand is the patch data. The patch data may be specified
in one of three ways: as a ">" followed by a string of hexadecimal
digits; as a character string in single quotes; or as a linker
expression. All patching is done a word (or 2 bytes) at a time, if
the specified patch data is less than a word the data is extended
by adding zeros to a hexadecimal string and a byte of >00 to
character strings. The linker expression is taken as a word value.

Examples

PATCH PGM1+>A00,>FF037AFF HEXADECIMAL PATCH
PATCH >A010,'TEXT' CHARACTER PATCH
PATCH 16+PGM2,PGM1+50 EXPR - DATA PGM1+50
*
* PATCH A BRANCH AT LOCATION >A000 TO
* ROUTINE "MAIN"
PATCH >A000,>0460 BRANCH INSTRUCTION
PATCH >A002,MAIN ADDRESS OF ROUTINE "MAIN"

If the "F" option has been selected, LINKER will display the
existing data in the listing before patching. It is possible to
patch data into areas of memory that do not have any object code
loaded previously.

The VERIFY StatementThe VERIFY StatementThe VERIFY StatementThe VERIFY Statement

The VERIFY control statement can be used to verify the contents of
some loaded part of the program. It is often useful to verify
data before patching it so that you are sure you are patching the
correct location.

The VERIFY statement has two operands. The first is the location
to be verified specified as a linker expression. The second
operand is the verify data. The verify data may be specified in
one of three ways: as a ">" followed by a string of hexadecimal
digits; as a character string in single quotes; or as a linker
expression. All verification is done a word (or 2 bytes) at a
time, if the specified verify data is less than a word the data
is extended by adding zeros to a hexadecimal string and a byte of
>00 to character strings. The linker expression is taken as a word
value.

If the data in memory is not the same as that specified, an error
is caused. If the "F" option has been selected, LINKER will
display the data in memory.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 14

Examples

VERIFY PGM+>100,>0A1B2C3D0000
VERIFY >20A8,'TEXT'
VERIFY PGM1+50,PGM2

The COMMON StatementThe COMMON StatementThe COMMON StatementThe COMMON Statement

The COMMON control statement can be used to position a COMMON
section within the program and can be used to specify a size for
the COMMON section. The statement has two operands, the first, the
name of the COMMON section; the second the optional length of the
section.

If the COMMON statement is not used, any defined COMMON sections
will be placed at the end of the various program sections. If a
size is not specified for a COMMON section then the maximum size
specified in the already loaded object will be used.

If an object file contains a definition of the COMMON name as a
regular DEF (that is, assembled data or code is given the name of
the COMMON) then that definition will override the COMMON
definition and its length. This means that a COMMON can be defined
in one assembly and then data assembled "into" it in another
assembly.

Examples

COMMON WORK Position "WORK" here
COMMON TABLE,1024 Position and set size

OVERLAY PROGRAMSOVERLAY PROGRAMSOVERLAY PROGRAMSOVERLAY PROGRAMS

The AEMS provides you with a large memory. The 9900 microprocessor
in the TI 99/4A, however, is limited to a 16 bit address or a 64K
"address space". Further, half of this 64K address space is
dedicated to special purpose code -- DSR ROM, OS ROM, Cartridge
ROM/RAM, etc.

To provide access to the large memory, AEMS "maps" 4K "pages" into
the microprocessor's address space at addresses >2000, >3000,
>A000, >B000, >C000, >D000, >E000 and >F000. This gives access to
8 different 4K pages of RAM at any one time in addition to the 8K
of unmapped RAM that may be in a cartridge at address >6000 or any
DSR RAM at address >4000.

While programming in a mapped memory environment is not as easy as
programming in a large linear address space, it is very nice to
have large quantities of RAM available directly to the
microprocessor. In programs there are two almost independent uses
of memory. The first use is for the executable code of a program
and the second is for the data on which a program works.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 15

The AEMS LINKER with its "overlay" processing solves some of the
large code problem. The library routines provided with the AEMS
solve some of the large data problem. Both the LINKER and the
library routines provide the programmer access to the large memory
without having to know the details of how the memory mapping works
and without having to write extra code. (Section 'SYSTEM
INFORMATION' gives the details for those who want them).

Writing any large program requires some discipline on the
programmer's part. This discipline is even more important if the
program is to execute in a small address space via a mapping
mechanism. It is always good practice to subdivide a large program
into relatively small subroutines. It is also always good
practice to make these subroutines "independent". An independent
subroutine is one that depends only on clearly defined data: data
passed as parameters, data in a defined "COMMON" area, or data
defined and contained within itself.

If the code in a large program consists of a main program and
several independent subroutines with a "calling pattern" that can
be diagrammed as a "tree" then that program can be segmented into
an "overlay structure" by the LINKER. All code to perform the
overlay (or mapping in and out of pages) can be added
automatically by the LINKER without the programmer having to
explicitly write code to perform the function. The programmer's
task is simply to write his program as a series of "small"
independent subroutines, which is good programming practice in any
event.

In order to demonstrate what we are talking about here we will use
an example. Suppose we have a well designed and written "large"
program. The source for the program is shown below, written in a
"pseudo" language.

* Main Program
 CALL INIT
 CALL PASS1
 CALL PASS2
 CALL ENDUP
 END

* Initialization Subroutine
 ENTRY INIT
 SETUP VDP
 SETUP TABLES
 GET USER INPUTS
 OPEN FILES
 RETURN
 END

* Pass 1 Processing
 ENTRY PASS1
 CALL GETREC
 CALL BLDTBL

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 16

 LOOP TILL EOF
 RETURN
 END

* Pass 2 Processing
 ENTRY PASS2
 CALL GETTBL
 CALL PUTREC
 LOOP TILL END OF TABLE
 RETURN
 END

* End of Program Processing
 ENTRY ENDUP
 CLOSE FILES
 ISSUE MESSAGES
 RETURN
 END

* Get Input Records
 ENTRY GETREC
 GET RECORD
 CHECK RECORD
 RETURN
 END

* Output Record
 ENTRY PUTREC
 BUILD OUTPUT RECORD
 PUT RECORD
 RETURN
 END.

* Build Data Tables
 ENTRY BLDTBL
 ENTER DATA FROM RECORD
 RETURN
 END

* Lookup Table Entry
 ENTRY GETTBL
 CALCULATE TABLE POSITION
 PICK OUT VALUES
 RETURN
 END

In this program we have a main program and 8 subroutines. This is
a "large" program, so let's assume each of these routines is just
under 8K bytes. Then our large program is 9 x 8K = 72K bytes,
which is indeed a large program for the TI 99/4A with 32K RAM.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 17

Now, let's view the "calling tree" of this program. It is shown
below.

 |
 | +--------+
 | | |
 8K | MAIN |
 | | |
 | +--------+
 | / . . \
 | / \
 --- / . . \
 | / \
 | / . . \
 | +------+ +------+ +------+ +------+
 8K | | | | | | | |
 | |INIT | |PASS1 | |PASS2 | |ENDUP |
 | | | | | | | | |
 | +------+ +------+ +------+ +------+
 | / | | \
 --- / | | \
 | / | | \
 | / | | \
 | / | | \
 | +------+ +------+ +------+ +------+
 8K | | | | | | | |
 | |GETREC| |BLDTBL| |GETTBL| |PUTREC|
 | | | | | | | | |
 | +------+ +------+ +------+ +------+
 |

You can see from the diagram that, while the total program size is
72K, the depth of the calling tree is only 24K. The depth of the
tree (or addressing space required) is the important measurement
in a mapped memory environment.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 18

Now, let's look at the addressing space and RAM availability of
the TI 99/4A with AEMS.

 +-------+
>0000 | | ROM OS
 +-------+
>1000 | | ROM OS
 +-------+-------+-------+--
>2000 |(1)2000|(2)2000|(3)2000| ... Mapped RAM
 +-------+-------+-------+--
>3000 |(1)3000|(2)3000|(3)3000| ... Mapped RAM
 +-------+-------+-------+--
>4000 | | DSR ROM
 +-------+
>5000 | | DSR ROM
 +-------+
>6000 | | Cartridge ROM/RAM
 +-------+
>7000 | | Cartridge ROM/RAM
 +-------+
>8000 | | Special (VDP, PAD)
 +-------+
>9000 | | Special (GROM, SPEECH)
 +-------+-------+-------+--
>A000 |(1)A000|(2)A000|(3)A000| ... Mapped RAM
 +-------+-------+-------+--
>B000 |(1)B000|(2)B000|(3)B000| ... Mapped RAM
 +-------+-------+-------+--
>C000 |(1)C000|(2)C000|(3)C000| ... Mapped RAM
 +-------+-------+-------+--
>D000 |(1)D000|(2)D000|(3)D000| ... Mapped RAM
 +-------+-------+-------+--
>E000 |(1)E000|(2)E000|(3)E000| ... Mapped RAM
 +-------+-------+-------+--
>F000 |(1)F000|(2)F000|(3)F000| ... Mapped RAM
 +-------+-------+-------+--

This diagram shows the fixed area of the TI 99/4A addressing space
and shows the mapped area with each 4K having the possibility of
being mapped to several different pages of extended RAM.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 19

Now we can see that it is possible to map our "large" program into
the AEMS as shown below.

 +------+
ROOT >2000 | |
 >3000 |MAIN |
 +------+

 +------+ +------+ +------+ +------+
LEVEL1 >A000 | | | | | | | |
 >B000 |INIT | |PASS1 | |PASS2 | |ENDUP |
 +------+ +------+ +------+ +------+

 +------+ +------+ +------+ +------+
LEVEL2 >C000 | | | | | | | |
 >D000 |GETREC| |BLDTBL| |GETTBL| |PUTREC|
 +------+ +------+ +------+ +------+

 +------+
Free >E000 | |
 >F000 | |
 +------+

This mapping, of course, assumes that the CALLs somehow map in the
correct pages at the correct addresses. The primary function of
the overlay processing in the LINKER is to supply the code
necessary to do the mapping at each CALL. It does this by building
a small stub for each called routine in the caller's section plus
a small overlay manager routine in the root section.

This overlay technique can be a powerful tool. In our example we
have a 72K program and yet still have 8K of address space free
(>E000 to >FFFF). he LINKER control statements necessary to
produce the overlay program for the above example are shown in
Examples 9 and 10 later in this manual.

To summarize overlaying:

 1. The program must be written as small independent relocatable
 subroutines.
 2. All CALLs must be made up and down the tree branches not
 across the branches.
 3. All CALLS must be via the BLWP instruction.
 4. No code is written in the program for overlaying. The overlay
 structure is specified in the LINKER control file and the
 LINKER inserts the code necessary to perform the overlay
 mapping.
 5. The CALL stub for each overlayed subroutine is 16 bytes.
 CALLs within an overlay or towards the root of the tree have
 no overhead.
 6. The overlay manager code inserted into the root segment is 60
 bytes in size.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 20

 7. The mapping hardware works on 4K blocks in the >2000 to >3FFF
 and >A000 to >FFFF addressing ranges giving a maximum of a
 root section and 7 levels of overlay. Minimum size of an
 overlay is 4K.
 8. The overlays must occur at 4K boundaries. The LINKER
 automatically adjusts section sizes rounding them up to the
 next 4K boundary.
 9. The lengths of the various sections at a single overlay level
 do not have to be the same. The total depth of the CALL tree
 is 24K plus 8K.
10. Each overlay section consists of one or more object code
 files plus possible routines from libraries. That is, an
 overlay section can contain more than one subroutine.
11. The same subroutine code can be placed in different overlays
 on different branches. REFs are resolved up and down branches
 of the tree not across the call tree.
12. The LIBRARY statement must be used in each overlay section if
 resolution of REFs from the library is desired.

SUBROUTINE LIBRARIESSUBROUTINE LIBRARIESSUBROUTINE LIBRARIESSUBROUTINE LIBRARIES

On the LINKER distribution disk is a library of object routines,
RAGLIB. This is the same library distributed with the TI 99/4A
versions of LINKER. It is for use with "standard" E/A Option 5
programs.

With the AEMS card is shipped a Library disk with a linker
library, AEMSLIB, which contains routines specifically written for
the AEMS.

RAGLIB Routines

The RAGLIB library contains the following routines:

DSRLNK Device Service Routine Link
GPLLNK GPL Subroutine Link
KSCAN Keyboard Scan
XMLLNK Link to ROM routines
VMBR VDP Multi Byte Read
VMBW VDP Multi Byte Write
VSBR VDP Single Byte Read
VSBW VDP Single Byte Write
VWTR VDP Write To Register

Which perform the same functions as the routines described in the
Editor/ Assembler or Mini Memory manuals. The routines are all
separate so that when the library is searched by LINKER only those
routines that are actually used will be loaded. These routines
(in particular GPLLNK) will work no matter which cartridge is used
to load the memory image program. They are all relocatable object
modules, and are not necessarily loaded into low memory as they
are by E/A.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 21

Note also, that the information about the DSR routine left in
memory by the E/A and MM DSRLNK routines is not left by the
library DSRLNK.

SYSTEM INFORMATIONSYSTEM INFORMATIONSYSTEM INFORMATIONSYSTEM INFORMATION

The following subsections give details of some system information
as handled by the LINKER. This information is not necessary for
use of the LINKER, but may be interesting to Assembler
programmers.

Object Files

Only the following tags in a tagged object can be processed:

>01 compressed object begin
 0 uncompressed object begin
 1 absolute program entry point
 2 relocatable program entry point
 3 REF in relocatable code
 4 REF in absolute code
 5 DEF relocatable
 6 DEF absolute
 7 checksum
 8 checksum ignore
 9 load address absolute
 A load address relocatable
 B absolute data
 C relocatable data
 F end of record
 G complex relocatable value
 H not currently implemented
 I COMMON definition and size

Note that the checksum, tag 7, is always ignored. The TI Assembler
can produce other tags due to DORG, PSEG, DSEG and CSEG
statements, but since these are not documented they cannot be
processed.

Program Files

There are two types of program files, the standard memory image
program file as defined by TI and extended by Miller's Graphics
for GRAM program files; and the AEMS program file as defined in
this document. The LINKER can produce either type of file. The
AEMS format is required if a program makes use of overlays. The
first word of either type of program file is a "flag word" that
indicates what is contained in the file. The flag word is defined
as follows.

Byte 1 - >FF This is not the last segment of the program.
 >00 This is the last segment of the program.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 22

Byte 2 - >FF Segment is to be loaded into CPU RAM.
 >00 Segment is to be loaded into CPU RAM. Note that >00
 and >FF are the same for compatibility to the TI
 standard.
 >01 Load into GRAM 0 at >0000.
 >02 Load into GRAM 1 at >2000.
 >03 Load into GRAM 2 at >4000.
 >04 Load into GRAM 3 at >6000.
 >05 Load into GRAM 4 at >8000.
 >06 Load into GRAM 5 at >A000.
 >07 Load into GRAM 6 at >C000.
 >08 Load into GRAM 7 at >E000.
 >09 Load into ROM BANK 1 at >6000.
 >0A Load into ROM BANK 2 at >6000.
 >A0 AEMS non-overlay program or overlay root.
 >A1 AEMS overlay segment.

Standard program files consist of the exact contents of memory
written to a disk. A memory image program may be split into two
or more segments depending upon the length of the program. Each of
the segments is written to a separate disk file. Option 3 of TI
WRITER will load a segment with a maximum size of >2000 while
Option 5 of Editor/Assembler will load a segment with maximum size
of >2400 bytes. LINKER produces segments with a maximum length of
>2000. The name of the first segment is specified and the names
for all following segments is derived by adding 1 to the last byte
of the name of the previous segment. Each memory image file has a
3 word (or 6 bytes) header that indicates to a loader where in
memory to load the program. The header is:

WORD 1 Flag word as described above.
WORD 2 Length of code in this segment in bytes. Note that the
 length of the segment on disk is 6 bytes more to include
 the 6 bytes of header information.
WORD 3 Address at which this segment is to be loaded.

NOTE that the length of the memory image program may not be the
same as the length of the tagged object program. This can be
caused by a work area that has no code or data loaded into it
occurring at the end of the program. LINKER will not waste disk
space writing out an area that you have not filled with code or
data. In fact, if your program contains areas inside the program
that are unused and which exceed 2048 bytes in size LINKER will
break the program at that point and create two separate segments.

The AEMS Program File format is a bit more complicated than the
standard in order to accommodate the much larger memory size and
features of the AEMS system. An AEMS program is "page
relocatable". That is, the parts of the program can be loaded into
any contiguous block of pages in extended RAM. This page
relocation allows the possibility of more than one program being
loaded into memory at the same time.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 23

The header for an AEMS program or root section of an overlay
program is as follows.

WORD 1 Flag >FFA0 or >00A0.
WORD 2 Length of code in this segment in bytes.
WORD 3 Address at which this segment is to be loaded.
WORD 4 Total number of pages of memory required for the overlay
 program. This number includes a full 32K or 8 pages for the
 root section of an overlay program or is exactly 8 for a
 non-overlay program.
WORD 5 Entry address of the program. This word is repeated in
 every segment of a program.
WORD 6 Number of bytes in the "page relocation table" which begins
 at WORD 7. This may be zero.
WORD 7 If there are page relocation entries (WORD 5 is non-zero)
 then each word in the table is the address of a word
 containing a "relative page number" which is to be
 relocated.

Note that there may be more than one segment to the root section
in a program and that the root section may be loaded at any
address in the 4A's 64K address space. If there is more than one
root segment WORD 4 (number of pages required) will be identical
in all segments. It is redundant in all but the first segment.

The header for an AEMS overlay segment is as follows.

WORD 1 Flag >FFA1 or >00A1.
WORD 2 Length of code in this segment in bytes.
WORD 3 Address of this segment when it is mapped in for execution.
 The last 12 bits of this address is the offset within the
 relative page at which this segment is loaded.
WORD 4 Relative page number of this segment.
WORD 5 Entry address of the program.
WORD 6 Number of bytes in the "page relocation table" which begins
 at WORD 7. This may be zero.
WORD 7 If there are page relocation entries (WORD 5 is non-zero)
 then each word in the table is the address of a word
 containing a "relative page number" which is to be
 relocated.

Note that an overlay section may be more than one page in length
and that there may be more than one file segment for an overlay
section.

Overlay Code

The "Overlay Manager" code shown below is added to the root
section of a program by the LINKER. Note that this code does not
allow a single overlay section to be split between the low and
high memory blocks.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 24

 * Map in N sequential pages and
 * simulate BLWP call to subroutine
 *
 OVMGR SBO 0 enable mapper regs
 MOV *R11+,R10 Get N, # pages
 MOV *R11+,R9 Get 1st mapper reg
 MOV *R11+,R7 Get 1st page #
 OVMGR2 MOV R7,*R9 Set mapper reg
 AI R9,>0010 Incr to next register
 AI R7,onepage Incr page #
 DEC R10 Loop for N pages
 JGT OVMGR2
 SBZ 0 Disable mapper regs
 MOV *R11,*R11 Get real BLWP vector
 MOV *R11+,R7 Get WSP
 MOV *R11,R9 Get branch addr
 MOV R13,@26(R7) Simulate BLWP
 MOV R14,@28(R7)
 MOV R15,@30(R7)
 OVMGRW EQU $-12 OVMGR workspace
 * CALL user subroutine
 LWPI 0 R6,R7 Load user WSP
 B @0 R8,R9 Go to user sub
 BSS 2 R10
 BSS 2 R11
 DATA >1E00 R12 Mapper CRU addr
 BSS 6 R13-R15

Shown below is the "stub" inserted by the LINKER for each
subroutine call that causes an overlay. Note that the return is
direct to the calling BLWP, and that the mapped in pages remain
mapped in on return.

 * Stub for calling overlayed subroutine
 * Called via BLWB @OSUB
 OSUB DATA OVMGRW Overlay Manager WSP
 DATA $+2
 BL @OVMGR Call manager
 DATA N # pages in overlay
 DATA >40xx 1st mapper reg addr
 DATA n 1st page number
 DATA sub real BLWP vector

AEMS Mapper

AEMS uses the Texas Instruments SN74LS612 memory mapper chip along
with additional logic to map the low and high memory addresses
from a 16 bit address to a 23 bit address. A 23 bit address
accommodates a 4 Megabyte memory.

This mapping is done by splitting the TI 99/4A 16 bit address into
two parts: a 4 bit page number and a 12 bit page offset. The 12
bit page offset gives a 4K page. The 4 bit page number is used to
select a "mapper register" containing an 11 bit extended page

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 25

number. The 11 bit extended page number is combined with the
original 12 bit page offset to give a 23 bit expanded memory
address.

The mapper can be inactive or active. When the mapper is inactive
the TI 99/4A will operate as though it had an ordinary 32K memory
card. At power on, the mapper is inactive.

The mapper is activated by setting a CRU bit (>1E02) to one. When
active, only addresses >2000 to >3FFF and >A000 to >FFFF are
mapped. Mapping can be turned off by setting the CRU bit to zero.

The mapper has 8 active "registers" that specify which pages are
mapped into the TI 99/4A's address space. In order to access these
registers (for write or read) the access must be enabled by
setting CRU bit >1E00 to one. Access is disabled by setting the
CRU bit to zero. The mapper registers are accessed by normal 9900
instructions at the following addresses:

Register Access at Maps Page
 Number Address in at
 2 >4004 >2000
 3 >4006 >3000
 A >4014 >A000
 B >4016 >B000
 C >4018 >C000
 D >401A >D000
 E >401C >E000
 F >401E >F000

The access addresses will respond to instructions just like a
normal word of RAM. Typical code for operation of the mapper is
shown below.

* Load Mapper Registers
 LI R12,>1E00 CRU base address
 SBO 0 Enable register access
 LI R0,20 Page # 20
 MOV R0,@>4014 Map page in at >A000
 LI R0,50 Page # 50
 MOV R0,@>4016 Map page in at >B000
 SBZ 0 Disable register access
*
 SBO 1 Turn mapper on
 MOV @>A000,R0 Get 1st word page 20
 MOV @>B002,R1 Get 2nd word page 50
 SBZ 1 Turn mapper off

Only in special cases should the programmer have to manipulate the
mapper or its registers directly. Assembler macros and library
routines are provided for most routine tasks.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 26

THE AEMS LOADERTHE AEMS LOADERTHE AEMS LOADERTHE AEMS LOADER

The AEMS loader, permanently loaded into RAM by the AEMS boot
program, is the heart of the AEMS system. Its main function is to
load and execute programs. It also contains system routines for
management of the extended memory pages and some system routines
that make programming for the AEMS system easier.

The AEMS loader does not occupy space in the 4A's address space.
The loader, its data areas and its system routines are mapped in
and out of the address space as required.

The AEMS system controls the use of RAM. The following table shows
the use of the extended RAM pages.

Page # Use
--
>00 System. AEMSLOAD - Mapped in at >A000
>01 System. AEMSLOAD - Mapped in at >B000
>02 Reserved. Low RAM >2000 when mapper inactive
>03 Reserved. Low RAM >3000 when mapper inactive
>04 System
>05 System
>06 System
>07 System
>08 System
>09 System
>0A Reserved. High RAM >A000 when mapper inactive
>0B Reserved. High RAM >B000 when mapper inactive
>0C Reserved. High RAM >C000 when mapper inactive
>0D Reserved. High RAM >D000 when mapper inactive
>0E Reserved. High RAM >E000 when mapper inactive
>0F Reserved. High RAM >F000 when mapper inactive
>10 RAM mapped as required
>11 RAM mapped as required
etc ...
etc ...

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 27

EXAMPLESEXAMPLESEXAMPLESEXAMPLES

The following examples show some typical uses of the LINKER. In
each case, a situation is set up then the LINKER control file and
the LINKER prompts are shown. In the design and coding of LINKER
every effort was made to keep everything as general as possible.
Because of this the LINKER can do a lot of useful things (and
probably a lot of things that are not useful). The examples show
some "normal" uses. With a little thought and practice you can
soon develop some tricks that seem useful to you.

While experimenting with LINKER you should select all the options
so that a listing is produced showing exactly what the LINKER did
with your program.

EXAMPLE 1EXAMPLE 1EXAMPLE 1EXAMPLE 1

This is the simplest case. Suppose you have a single assembler
language program that is complete and requires no subroutines.
The program is assembled into a relocatable tagged object module
into file "DSK1.EXAMPLE1/O". You want to make a memory image
program that loads into high memory (i.e. at >A000). The program
is to be placed in the file "DSK1.PROGRAM1".

LINKER Control File

 The object file is the control file in this case.

LINKER Input Fields

Printer:PIO
Library:
Options:SML
Control:DSK1.EXAMPLE1/O
Program:DSK1.PROGRAM1

Link More?

The requested program file is created and written to file
DSK1.PROGRAM1 in the Standard E/A Option 5 format. A memory map
of the program is printed along with a message giving the header
information of the memory image file.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 28

EXAMPLE 2EXAMPLE 2EXAMPLE 2EXAMPLE 2

Suppose you have a single assembler language program that has REFs
to the routines VMBR and VMBW (from the library supplied on the
LINKER disk). The program is assembled as a relocatable tagged
object module into file "DSK1.EXAMPLE2/O". You want to make a
memory image program that loads into the high memory expansion
(i.e. at >A000). The program is to be placed in the file
"DSK1.PROGRAM2". You want a listing with all the optional data
LINKER can provide.

LINKER Control File

The object file is the control file in this case.

LINKER Input Fields

Printer:PIO
Library:DSK1.RAGLIB
Options:MLFX
Control:DSK1.EXAMPLE2/O
Program:DSK1.PROGRAM2

Link More?

The requested program file is created and written to file
DSK1.PROGRAM2. The printed listing contains full information about
the object modules processed and the memory image program
produced.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 29

EXAMPLE 3EXAMPLE 3EXAMPLE 3EXAMPLE 3

Suppose your program consists of a main program and two
subroutines all three of which have been separately assembled into
files DSK2.MAIN3/O, DSK2.SUBA3/O and DSK2.SUBB3/O. This program
also has REFs to the routines VMBR and VMBW (from the library
supplied on the LINKER disk). You want to make a program that
loads into high memory (i.e. at >A000). The program is to be
placed in the file "DSK2.PROGRAM3". You want a listing with all
the optional data LINKER can provide.

LINKER Control File (EXAMPLE3/L)

*
* CREATE PROGRAM 3
*
LOAD DSK2.MAIN3/O
LOAD DSK2.SUBA3/O
LOAD DSK2.SUBB3/O

LINKER Input Fields

Printer:PIO
Library:DSK1.RAGLIB
Options:MLFX
Control:DSK2.EXAMPLE3/L
Program:DSK2.PROGRAM3

Link More?

The requested program file is created and written to file
DSK1.PROGRAM3. A listing is printed showing everything about the
linked program.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 30

EXAMPLE 4EXAMPLE 4EXAMPLE 4EXAMPLE 4

Suppose you have a single assembler language program that has REFs
to the routines VMBR and VMBW (from the library supplied on the
LINKER disk). The program is assembled into a relocatable tagged
object module into file "DSK1.EXAMPLE4/O". You want to make a
program file that loads into low memory (i.e. at >2000). The
program is to be placed in the file "DSK1.PROGRAM4". You want a
listing with all the optional data LINKER can provide. Suppose
also that you have a single disk system.

In this case you need linker control statements because you want
your program loaded in low memory. Suppose you have created the
control file with an editor on the same disk as the object file
named "DSK1.EXAMPLE4/L".

LINKER Control File

* INTERCHANGE BLOCK 1 AND 2
* TO MAKE PROGRAM LOAD IN LOW MEMORY FIRST
BLOCK 1,>2000,>2000 LOW MEMORY
BLOCK 2,>A000,>6000 HIGH MEMORY
LOAD DSK*.EXAMPLE4/O

LINKER Input Fields

Printer:PIO.
Library:*.RAGLIB
Options:MLFX
Control:DSK1.EXAMPLE4/L
Program:*.PROGRAM4

Link More?

The requested program file is created and written to file
DSK1.PROGRAM4.

Note the "shorthand" method of entering the "device" part of the
Library and Program file names, indicating they are on the same
device as the control file.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 31

EXAMPLE 5EXAMPLE 5EXAMPLE 5EXAMPLE 5

Suppose you have an assembler program in object form in file
DSK2.EXAMPLE5/O. This program begins execution at START which is
defined by a DEF in the program, but which is not the first byte
of the program. You want to make a program that loads into high
memory (i.e. at >A000). The memory image program is to be placed
in the file "DSK1.PROGRAM5". You want a listing with all the
optional data LINKER can provide.

LINKER Control File (EXAMPLE5/L)

*
* CREATE PROGRAM 5
*
LOAD DSK1.EXAMPLE5/O.
ENTRY START TELL LINKER WHERE THE ENTRY IS

LINKER Input Fields

Printer:PIO
Library:
Options:SMLFX
Control:DSK2.EXAMPLE5/L
Program:DSK1.PROGRAM5

Link More?

Because the program begins execution at other than the first byte
and because the "S" option was specified to force a standard E/A
Option 5 program file, LINKER creates two segments for the
program. The first segment begins at START and ends at the end of
the program; it is written to file DSK1.PROGRAM5. The second
segment begins at the first byte of the program and ends just
before START; it is written to file DSK1.PROGRAM6.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 32

EXAMPLE 6EXAMPLE 6EXAMPLE 6EXAMPLE 6

Suppose, the same situation as example 5, that is, you have an
assembler program in object form in file DSK2.EXAMPLE6/O. This
program begins execution at START which is defined by a DEF in the
program, but which is not the first byte of the program. You want
to make a program that loads into high memory (i.e. at >A000). In
this case you want to make the program file be a single segment
(or file). The program is to be placed in the file
"DSK1.PROGRAM6". You want a listing with all the optional data
LINKER can provide.

LINKER Control File (EXAMPLE6/L)

* CREATE PROGRAM 6
*
* IN ORDER TO CREATE A SINGLE SEGMENT,
* WE PATCH A BRANCH AT >A000 TO THE REAL
* ENTRY POINT OF THE PROGRAM, "START".
*
BLOCK 1,>A004,>5FFC LEAVE 4 BYTES FOR
* THE PATCH.
LOAD DSK2.EXAMPLE6/O
PATCH >A000,>0460 BRANCH INSTRUCTION
PATCH >A002,START ADDRESS FOR BRANCH.
ENTRY >A000 TELL LINKER ABOUT THE ENTRY

LINKER Input Fields

Printer:PIO
Library:
Options:SMLFX
Control:DSK1.EXAMPLE6/L
Program:DSK1.PROGRAM6

Link More?

Note that the PATCH statements must come after the object module
is loaded so that we can refer to the symbol "START".

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 33

EXAMPLE 7EXAMPLE 7EXAMPLE 7EXAMPLE 7

It is sometimes convenient when programming a large program to
divide it into smaller pieces. Often when this is done you need
all the separate pieces to refer to the same work/data area. This
can be done by making the work/data area absolute code so that all
pieces know the address of the data. A problem can arise when
you have a mixture of absolute and relocatable code like this.
This problem occurs because the loaders for the TI 99/4A do not
keep track of absolute code and may load a relocatable module over
top of your common work/data area.

Making use of the LINKER's BLOCK structure you can overcome this
problem. At the same time, LINKER keeps track of all code or data
loaded and will automatically produce whatever segments are
required for the program.

Suppose you have this situation. You have a main program
(MAIN7/O), two subroutines (SUBA7/O and SUBB7/O) and an absolute
work/data area (WORK7/O). The work/data area was assembled at
absolute address >F000 to >FFFF.

LINKER Control File (EXAMPLE7/L)

* CREATE PROGRAM 7
*
* CHANGE THE LINKER MEMORY BLOCKS TO
* PREVENT OVERLAY OF ABSOLUTE WORK AREA
*
BLOCK 1,>A000,>5000 LEAVE OUT >F000 UP
LOAD DSK2.MAIN7/O
LOAD DSK2.SUBA7/O
LOAD DSK2.SUBB7/O

LINKER Input Fields

Printer:DSK1.LISTING
Library:
Options:MLFX
Control:DSK1.EXAMPLE7/L
Program:DSK1.PROGRAM7

Link More?

Note in this case we sent the listing to disk in file
DSK1.LISTING. Note also that the COMMON facilities of the AEMS
Macro Assembler and the AEMS Linker make the use of this method of
using "common data" areas obsolete. The preferred and easier way
now is to define a COMMON in each assembly. This common area then
will be relocatable and the LINKER will allocate memory for it
wherever it can.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 34

EXAMPLE 8EXAMPLE 8EXAMPLE 8EXAMPLE 8

Suppose you have an object program in file DSK1.EXAMPLE8/O. You
want to make a memory image program that loads into the RAM in the
cartridge slot (i.e. at >6000). The program is to be placed in the
file DSK1.PROGRAM8". No listing is required.

LINKER Control File (EXAMPLE8/L)

*
* CREATE PROGRAM8
*
* MAKE PROGRAM LOAD IN CARTRIDGE RAM
*
BLOCK 1,>6000,>2000 CARTRIDGE SLOT RAM
LOAD DSK*.EXAMPLE8/O

LINKER Input Fields

Printer:PIO
Library:
Options:S
Control:DSK1.EXAMPLE8/L
Program:*.PROGRAM8

Link More?

The requested program file is created and written to file
DSK1.PROGRAM8. The program will load in the RAM at address >6000
to >7FFF.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 35

EXAMPLE 9EXAMPLE 9EXAMPLE 9EXAMPLE 9

This example shows how to build an overlay program. The program is
the example used in the section "OVERLAY PROGRAMS". The nine
subprograms are assembled into object files: MAIN/O, INIT/O,
PASS1/O, PASS2/O, ENDUP/O, GETREC/O, BLDTBL/O, GETTBL/O and
PUTREC/O.

LINKER Control File (EXAMPLE9/L)

*
* CREATE OVERLAY PROGRAM
*
ORIGIN >2000 Root segment in low memory
LOAD DSK*.MAIN/O Root code
OVERLAY 1 1st Level of Overlay
LOAD DSK*.INIT/O
OVERLAY 1 At 1st level again
LOAD DSK*.PASS1/O
OVERLAY 2 2nd level of PASS1
LOAD DSK*.GETREC/O
OVERLAY 2 At 2nd level PASS1 again
LOAD DSK*.BLDTBL/O
OVERLAY 1 At 1st level again
LOAD DSK*.PASS2
OVERLAY 2 2nd level of PASS2
LOAD DSK*.GETTBL/O
OVERLAY 2 2nd level PASS2 again
LOAD DSK*.PUTREC/O
OVERLAY 1 At 1st level again
LOAD ENDUP

LINKER Input Fields

Printer:PIO
Library:
Options:OFLM
Control:DSK1.EXAMPLE9/L
Program:DSK1.PROGRAM9A

 Link More?

The requested overlay program is created and written to files
DSK1.PROGRAM9A, DSK1.PROGRAM9B, DSK1.PROGRAM9C, DSK1.PROGRAM9D,
DSK1.PROGRAM9E, DSK1.PROGRAM9F and DSK1.PROGRAM9G. Note that the
overlay option "O" was used.

 RAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKERRAG SOFTWARE AEMS LINKER 36

EXAMPLE 10EXAMPLE 10EXAMPLE 10EXAMPLE 10

This example is the same as Example 9 except that we will assume
that most of the subprograms use some library calls. Assume they
all call VMBW and VMBR and that GETREC and PUTREC call DSRLNK. The
nine subprograms are assembled into object files: MAIN/O, INIT/O,
PASS1/O, PASS2/O, ENDUP/O, GETREC/O, BLDTBL/O, GETTBL/O and
PUTREC/O.

LINKER Control File (EXAMPL10/L)

* CREATE OVERLAY PROGRAM
ORIGIN >2000 Root segment in low memory
LOAD DSK*.MAIN/O Root code
* Load common routines in root segment
LOAD DSK1.AEMSLIB,VMBR
LOAD DSK1.AEMSLIB,VMBW
OVERLAY 1 1st Level of Overlay
LOAD DSK*.INIT/O
OVERLAY 1 At 1st level again
LOAD DSK*.PASS1/O
OVERLAY 2 2nd level of PASS1
LOAD DSK*.GETREC/O
LOAD DSK1.AEMSLIB,DSRLNK Load library routine
OVERLAY 2 At 2nd level PASS1 again
LOAD DSK*.BLDTBL/O
OVERLAY 1 At 1st level again
LOAD DSK*.PASS2
OVERLAY 2 2nd level of PASS2
LOAD DSK*.GETTBL/O
OVERLAY 2 2nd level PASS2 again
LOAD DSK*.PUTREC/O.
LOAD DSK1.AEMSLIB,DSRLNK Load library routine
OVERLAY 1 At 1st level again
LOAD ENDUP

LINKER Input Fields

Printer:PIO
Library:
Options:OFLM
Control:DSK1.EXAMPL10/L
Program:*.PROGRM10A

 Link More?

The requested overlay program is created and written to files
DSK1.PROGRM10A, DSK1.PROGRM10B, DSK1.PROGRM10C, DSK1.PROGRM10D,
DSK1.PROGRM10E, DSK1.PROGRM10F and DSK1.PROGRM10G. Note that the
overlay option "O" was used. Note also that DSRLNK was loaded into
two different branches of the overlay.

