
 

The Missing Link Graphic Adventure
XB v2.8 G.E.M.

Bit mapped graphics for Extended BASIC

by Harry Wilhelm

This Manual                                                                                         Copyright© 2020 by Harry Wilhelm
The Missing Link Graphic Adventure for XB 2.8 G.E.M.                 Copyright © 2020 by Harry Wilhelm

08/27/20



The Missing Link Graphic Adventure

TABLE OF CONTENTS

INTRODUCTION - - - - - - - 3
Equipment required - - - - - - - 3
Differences from Extended BASIC - - - - - 3
Loading The Missing Link Graphic Adventure - - - - 5
Turn off TMLGA (OFF) - - - - - - - 5
Turn on TMLGA (TMLGA) - - - - - - - 5

USING THE SUBROUTINES - - - - - - - 6
FULL SCREEN OPERATIONS - - - - - - 6

Clear screen (CLEAR) - - - - - - - 6
Pixel colors (COLOR) - - - - - - - 6
Screen color (SCREEN) from XB - - - - - 6

PEN COMMANDS - - - - - - - - 7
Pen color (PENHUE) - - - - - - - 7
Pen down (PD) - - - - - - - - 7
Pen reverse(PR)- - - - - - - - 7
Pen erase(PE) - - - - - - - - 7
Pen up(PU) - - - - - - - - 7

THE WINDOW - - - - - - - - 7
Window size (WINDOW) - - - - - - 7
Reverse window (REVWIN) - - - - - - 8
Fill window (FILL) - - - - - - - 8

TEXT - - - - - - - - - - 8
Scroll the lower third of screen (SCROLL) - - - - - 9
Print on screen (PRINT)- - - - - - - 9
Input from screen(INPUT) - - - - - - 9
Scroll and input (SINPUT) - - - - - - - 10
Redefine character patterns (CHAR) - - - - - 10
Specify character size (CHSIZE) - - - - - 10
Format numeric output (FORMAT) - - - - - 11

CARTESIAN GRAPHICS - - - - - - - 12
Place pixel on screen (PIXEL) - - - - - - 12
Draw line (LINE) - - - - - - - 12
Draw box (BOX) - - - - - - - 12
Draw circle (CIRCLE) - - - - - - - 12

SPRITE GRAPHICS - - - - - - - - 12
Define sprite pattern (CHAR) - - - - - - 12
Create sprites (SPRITE)- - - - - - - 13
Delete sprites (DELSPR) - - - - - - 13
Turn off automatic sprite motion (FREEZE) - - - - 13
Turn on automatic sprite motion (THAW) - - - - 13
Get sprite position (SPRPOS) - - - - - - 13
Sprite distance (DSTNCE) - - - - - - 13
Checking for sprite coincidences - - - - - 14
Sprite coincidence (COINC) from XB - - - - - 14
Sprite size (MAGNIFY) from XB - - - - - 14
Sprite early clock - - - - - - - - 14

- 1 -



The Missing Link Graphic Adventure

PERIPHERAL ACCESS - - - - - - - 15
Load TI Artist picture (LOADP) - - - - - - 15
Load top 2/3 of a TI Artist picture (LOAD23) - - - - - 15
Save TI Artist picture (SAVEP) - - - - - - 15
Save top 2/3 of a TI Artist picture (SAVE23) - - - - - 15
Screen dump (DUMP) - - - - - - - 16
Load font from cartridge for bitmapped mode(FONTA) - - - 16
Load font from disk for bitmapped mode(LFONTA)- - - - 16

SAVING STACK SPACE - - - - - - - 16
CONVERTING PROGRAM FILES TO IV254 FILES - - - - 18
Using “RUN” within a program - - - - - - - 18
TML fonts/G.E.M. fonts - - - - - - - - 18

ACKNOWLEDGEMENTS

I would like to express my thanks to the following people, all of whom made significant contributions to  The Missing Link
Graphic Adventure:
Harry  Brashear,  John  Wilforth,  and  Barry  Traver  all  offered  good  suggestions  for  improving  The  Missing  Link  Graphic
Adventure.
Ollie Hebert  contributed vast  amounts  of time and energy.  He tested the program, edited the manual,  and wrote  numerous
demonstration programs. 
My wife Donna was incredibly understanding about the many hours that were put in writing, debugging, and documenting the
program.

If you like The Missing Link Graphic Adventure, it is in part due to the extra polishing made possible by these people.

Harry Wilhelm

INTRODUCTION

- 2 -



The Missing Link Graphic Adventure

The Missing Link Graphic Adventure is a modified version of  The Missing Link.  The purpose was to
make an engine for creating graphic adventures like those shown in the pictures above., Except for the
turtle graphics, TMLGA retains all of the graphics power provided by TML. To make graphic adventures
easier, assembly subroutines have been added that can load or save pictures in the upper 2/3 of the screen.
Text interaction can be done in the bottom third of the screen. The bottom third of the screen can be
scrolled as necessary without effecting the picture in the top of the screen. The default font is a 5x7 pixel
font which means that text is printed in 48 columns. (This was 57FONT in TML, or Font 8 in G.E.M.) 

For a graphic adventure, the most important subprograms would be LOAD23, SAVE23, PRINT, INPUT,
SCROLL and possibly those for sprite graphics. Because it is based on The Missing Link, there are a lot of
features  that  will  probably never  be  used  when making a  graphic  adventure.  Nonetheless,  these  are
described in detail in this manual. A creative programmer might find a use for them.

The code has been modified so that graphics are displayed noticeably faster.

EQUIPMENT REQUIRED

The Missing Link Graphic Adventure requires the TI-99/4A console, the Extended BASIC 2.8 G.E.M.
cartridge, and the 32K memory expansion. A disk drive system is recommended. An Epson compatible
printer is needed to use the screen dump feature.

DIFFERENCES FROM EXTENDED BASIC

The Missing Link Graphic Adventure will set the screen display to the standard 32 column graphics mode
when an Extended BASIC program is not running. It will change to a bit-mapped screen whenever a
program is running. This happens automatically, and requires no intervention by the user.

The bit-mapped screen is made up of pixels, which are the smallest dots that can be placed on the screen.
There are 192 pixel rows and 240 pixel columns when using The Missing Link Graphic Adventure. Screen
location 1,1 is at the upper left hand corner, and location 192,240 is at the lower right hand corner. The
screen is less than 256 pixels wide because an 8 pixel wide strip on each side of the screen is used to hide
the XB crunch buffer which cannot be relocated.

Two different color configurations can be used by The Missing Link Graphic Adventure:

The 16 color mode gives you access to all 16 colors that can be produced by the computer. The color data
for the screen is in the form of 1 pixel high by 8 pixel wide strips. Each strip can have a foreground color
and a background color.  The eight  pixels  contained in  each strip can be individually "turned on" or
"turned off". In other words, they can be set to the foreground color or the background color for that strip.
Different strips can have different foreground and background colors, but each strip can contain only two
colors. Having the color data in the form of 1x8 strips is somewhat limiting; nevertheless, spectacular full

- 3 -



The Missing Link Graphic Adventure

color displays can be produced. This limitation is built  into the TMS 9918A video chip. Unexpected
colors in the display are almost always the result of this limitation.

The 2 color mode provides one foreground and one background color for the entire screen. The 2 color
mode is the easiest to work with because there is more stack space and no problems with the 8 pixel long
strips of colors.

The Bit-Mapped mode requires that the video memory be configured in a drastically different way than is
normally used by Extended BASIC. This has several important consequences.

None of the usual methods of putting characters or graphics on the screen will work properly. PRINT,
DISPLAY AT,  INPUT,  ACCEPT AT,  HCHAR,  VCHAR, GCHAR,  SPRITE,  and others  can be used
without an error resulting. However, nothing will appear except some garbled color patches in the upper
third of  the screen.  The Missing Link Graphic Adventure provides  assembly language subroutines  to
accomplish these same operations using bit-mapped graphics.

Except for those concerned with screen and sprite access, all other Extended BASIC program statements
and subprograms will function normally.

The  bit-mapped  screen  consumes  a  great  deal  of  video  memory.  This  memory  has  to  come  from
somewhere. In this case it is obtained at the expense of the stack space. Fortunately, this is not as drastic
as it first appears, because there are still the usual 24488 bytes of memory available for your program.

The stack space is primarily used to contain string data and subprogram names. You may have to adjust
your programming style in order to conserve the limited stack space, especially when operating in the 16
color mode. Refer to page 18 of this manual for more information on how to conserve stack space. In the
16 color mode, the use of named subprograms with names more than eight characters long will cause
spurious blocks of color to appear on the screen.

In the 16 color mode, INPUTing from a DISPLAY format disk file will cause spurious blocks of color to
appear on the screen. You can avoid this by using LINPUT instead. (The use of INTERNAL format files
will present no problem.)

Using TRACE to help with debugging will cause spurious blocks of color to appear in the upper part of
the screen. These are the line numbers being printed to the graphics screen and they become visible when
you "break" the program with <Fctn 4>. After you "break" a running program, you can type CON to
continue. The screen will reappear just as it was when the program was interrupted, but the colors will be
set to black on cyan, and any sprites will be shown in the unmagnified size.

The "quit" key has been disabled. You must type "BYE" to return to the master title screen.

On vintage TI99 equipment,  be sure the contacts on the XB module are clean.  This will  help avoid
lockups. 

- 4 -



The Missing Link Graphic Adventure

LOADING The Missing Link Graphic Adventure

Press any key at the TI master title screen, then push 8 for The Missing Link Graphic Adventure.

The following appears on the screen:
CONFIGURE TMLGA
COLORS? (1=16,2=2) 1
Normally you would want to use 16 colors, but if full color is not necessary, 3752 bytes of stack space are
gained by using the 2 color mode. Another thing to consider is that a graphic adventure uses a lot of
pictures and the 2 color mode requires only half as much memory per picture as the 16 color mode.

You are then have an option to set the number of disk files
DISK FILES (0-3) 1
This  performs  the  equivalent  of  the  CALL FILES(n)  operation  but  the  VDP buffers  are  configured
differently. 

Stack space is directly related to the number of disk files that are opened. Each disk file costs 518 bytes of
stack space. Therefore, it is important to choose the smallest number of disk files that will still permit
your particular application to run.
The message * Extended Basic  v2.8 G.E.M. appears,  followed by TMLGA. This  tells  you that  The
Missing Link Graphic Adventure is loaded and active. The screen color and fonts will be either the default
ones or your custom settings. The TMLGA message is displayed at startup, when a program ends, or
when it breaks because of Fctn 4 or an error. (The original TML would change the screen color to light
green and the cursor to a Texas shape to tell you that TML is loaded and active. )

Once The Missing Link Graphic Adventure is activated, the only way to change the number of disk files
or the color mode is to type "BYE" to leave Extended BASIC and return to the master title screen. You
can then reload the program and choose a different configuration.

Below is the stack space available for the 8 possible configurations:

16 color mode 2 color mode

3 disk files 424 bytes 4176 bytes
2 disk files 942 bytes 4694 bytes
1 disk file 1460 bytes 5212 bytes
0 disk files 1978 bytes 5730 bytes

Once TMLGA is loaded and active, the two routines below can be used to turn TMLGA off or on.

CALL LINK(“OFF”)

Used to turn off TMLGA. The program is still in memory, but the routine that sets the screen for bit
mapped graphics is turned off. An XB program will run normally.

CALL LINK(“TMLGA”)

Used to turn on TMLGA. You would only need to use this if you have used CALL LINK(“OFF”) to turn
off TMLGA. Now when an XB program starts running it will automatically be in the bit mapped graphics
screen.

- 5 -



The Missing Link Graphic Adventure

USING THE SUBROUTINES

The Missing Link Graphic Adventure with XB 2.8 G.E.M. contains 36 assembly language subroutines,
which can be grouped in the following categories:

• FULL SCREEN OPERATIONS
• PEN COMMANDS
• WINDOWS
• TEXT
• CARTESIAN GRAPHICS
• SPRITE GRAPHICS
• PERIPHERAL ACCESS

All of these subroutines are intended to be called from within a running Extended BASIC program. No
error message results when the subroutines are called from the immediate mode, but no action will occur
on the screen.

The subroutines are described in the next sections. The first line of each description shows the correct
syntax to use when calling the subroutine. Most of the subroutines require that additional information be
included after the name of the subroutine. This information is supplied in the form of a parameter list. Be
careful to include these parameters in the order described, and not to mix strings and numbers. Sometimes
there are optional parameters. These optional parameters are shown enclosed in brackets. The purpose of
each of the parameters in the list is fully described.

Unless explicitly stated otherwise, numbers and strings can be constants,  variables, or elements of an
array. Numeric values do not have to be integers. The Missing Link Graphic Adventure will automatically
round them up or down.

FULL SCREEN OPERATIONS

CALL LINK("CLEAR")

This subroutine clears the entire screen by setting all pixels to the background color.

CALL LINK("COLOR",foreground-color,background-color)

This  subroutine  changes  all  the  pixels  on  the  screen  to  the  specified  color  combination.  Also,  the
PENHUE (described in the next section) is changed to the same color combination. The two color codes
must be numbers from 1 to 16. Refer to page 99 in the Extended BASIC manual for a list of the colors.
This subroutine has no effect on the screen color seen at the four edges of the display.

CALL SCREEN(color-code)

The screen color can be changed by using Extended BASIC's CALL SCREEN subprogram. Additionally,
any pixel in the display that is set to transparent (color code 1) will appear in the screen color. Refer to
page 165 in the Extended BASIC manual for more information.

- 6 -



The Missing Link Graphic Adventure

PEN COMMANDS

The  pen  commands  are  used  to  control  the  status  of  the  pen.  By  controlling  the  pen  status,  the
programmer  determines  exactly  what  occurs  when  the  pen  touches  any pixel  while  performing  all
subsequent graphics and text operations. (Text operations always assume that the pen is down, regardless
of the actual pen condition.)

CALL LINK("PENHUE",foreground-color,background-color)

This routine changes the color of the pen to the specified color combination. The color codes must be
numeric values from 1 to 16. The penhue then determines the foreground and background colors of the 8
pixel wide strip containing any pixel that is subsequently touched by the pen. A special case occurs when
the penhue is set to transparent on transparent with CALL LINK("PENHUE",1,1). This color combination
causes  The Missing Link Graphic Adventure to not change the colors of any pixel touched by the pen.
This is useful in circumstances where a previous operation has already set the colors of the pixels.

PENHUE is only functional in the 16 color mode.

CALL LINK("PD")

This routine sets the status of the pen to pen down. Any pixel subsequently contacted by the pen will be
"turned  on"  -  it  will  be  set  to  the  foreground  color.  The  pen  hue  determines  the  foreground  and
background colors of the 8 pixel wide strip containing any pixel that is touched by the pen.

CALL LINK("PR")

This routine sets the status of the pen to pen reverse. Any pixel subsequently contacted by the pen will be
inverted. Pixels that are "on" will  be turned "off", and pixels that are "off" will  be turned "on". The
penhue determines the foreground and background colors of the 8 pixel wide strip containing any pixel
that is touched by the pen.
CALL LINK("PE")

This routine sets the status of the pen to pen erase. Any pixel subsequently contacted by the pen will be
"turned  off"  -  it  will  be  set  to  the  background  color.  The  penhue  determines  the  foreground  and
background colors of the 8 pixel wide strip containing any pixel that is touched by the pen.

CALL LINK("PU")

This routine sets the status of the pen to pen up. The pen will "pass over" pixels without changing them.
However, the foreground and background colors of each 8 pixel wide strip will still be determined by the
penhue as if the pen had actually touched the pixel.

THE WINDOW

The "window"  is  the  rectangular  area  on  the  screen  that  determines  the  boundaries  where  text  and
graphics can be displayed. Text will always be displayed within the window. Graphics may be displayed
either inside or outside of the window. The window's boundaries have no influence on sprites. There is
only one window and it is always active. However, since its location and size can be changed at will by
your program, it is possible to place multiple windows on the same screen.

CALL LINK("WINDOW"[,row1,column1,row2,column2,1])

This routine is used to modify the location and size of the window. To specify that the window is to be the
entire  screen,  simply omit  all  the  optional  values.  TMLGA automatically defaults  to  the  full  screen
window when an XB program runs. In a graphic adventure you would normally want to use the default
full screen as the window. However, there may be times when you want to print text in the picture, and
WINDOW can be used to force text or graphics to be printed where you want.

- 7 -



The Missing Link Graphic Adventure

Row1 and column1 specify the location of the upper left hand corner of the window. Row2 and column2
specify the location of the lower right hand corner. The rows must be numeric values from 0 to 193 and
the columns must be numeric values from 0 to 241. To place a frame around the window, include the
optional trailing "1". To draw the frame correctly, the pen should have previously been set to pen down.

CALL LINK("REVWIN")

Normally,  graphics  can only be displayed within the  boundaries  of  the  window.  Calling this  routine
reverses the window so that graphics will only be displayed outside the boundaries of the window. Calling
this routine a second time restores the normal operation of the window. This routine has no effect when
text is being displayed.

CALL LINK("FILL"[,row1,column1,row2,column2])

FILL is a very versatile routine. It causes the pen to touch each pixel within the specified rectangular area.
By modifying the pen condition and the penhue, FILL can be used to erase selected areas, set text to
inverse video, change colors, and so on.

If the optional values are omitted, this routine will fill the entire window area.

The optional row and column values can be used to specify the size of a smaller rectangle within the
window. The row values must be from 1 to 192 and the column values must be from 1 to 240. These
values  are  relative  to  the  upper  left  hand  corner  of  the  window.  For  example,  CALL
LINK("FILL",2,3,10,11) will fill a rectangle inside the window starting at row 2, column 3 and ending at
row 10, column 11. Row1 and column1 must fall within the window area or an error message will be
issued. Row2 or column2 can fall outside of the window. In this case, the fill operation will only proceed
as far as the window boundaries. No error message will be issued.

TEXT

A program can input numbers and strings up to 255 characters long. Also, numbers and strings can be
printed on the screen. TMLGA does not restrict the display to 24 rows by 28 columns. Instead, there is
pixel by pixel accuracy in placing characters, and there is complete control over the size of the characters.
The default font has a character size of 5x7 pixels. This lets you have 9 rows of 48 characters in the
bottom third of the screen. This can be changed to any font or character size desired

Only characters having ASCII codes from 32 to 127 can be printed or input. When operating in the 16
color  mode,  the  current  penhue determines  the  color  of  the  characters.  The pen condition is  always
ignored. When characters are displayed, the character is shown in the foreground color atop a rectangle in
the background color.

Each character is placed on the screen by erasing a small rectangular block of pixels and then printing the
character inside that block. CHSIZE can be used to change the width and height of this block of pixels.
This is the character size and it directly determines the number of rows and columns that will fit on the
screen. Different size characters can be displayed on the screen at the same time.

Characters are displayed sequentially from left to right and from top to bottom. When The Missing Link
Graphic Adventure no longer has room for an entire character on the current line, it drops down a row,
goes to the left hand boundary of the window, and continues.

Text and numbers are always printed or input inside a window, which gives the programmer total control
over the screen appearance. By using a tall, narrow window it is possible to print text vertically. 

- 8 -



The Missing Link Graphic Adventure

When numbers are being displayed there is precise control over the numeric format used.

When TMLGA starts, the entire screen is the default window. Although you can print anywhere on the
screen, for a graphic adventure you would normally have text only in the bottom third of the screen in
rows 128 to 192. 

CALL LINK(“SCROLL”)

This scrolls the bottom third of the screen up by the character height in pixels then blanks the bottom row
of the screen. The character height cannot be greater than 8. You can also force a scroll by printing to, or
inputting from, a row that is off the bottom of the screen, as described below.

CALL LINK("PRINT",row,column,string-or-number[,string_variable])

This is used to print a string or a number to the screen. The row and the column are the pixel row and the
pixel column relative to the upper left hand corner of the window. The row must be from 1 to 208. If the
row is off the bottom of the screen or so low that the characters will not totally fit, then the lower third of
the screen will repeatedly scroll by the character height in pixels until the text can fit. The column must be
from 1 to 240. The string being printed can be up to 255 characters long. Numeric values are printed as
specified by the FORMAT routine described below.

Word wrap is always on when using PRINT. There are three simple rules:
* Leading spaces are deleted so that the first character on a line will not be a space
* If a word will not fit in the remaining space on the line, then TMLGA will fill the rest of the line with
spaces, drop down a line, go to column 1 of the window or screen, and continue printing. A word will
only be broken if it is too long to fit totally within the left and right columns of the window.
* Trailing spaces at the end of a string are not deleted unless TMLGA has to start a new line.

For graphic adventures the window will normally be the full screen. When using the full screen, if the row
would  make  the  characters  partially  or  completely off  the  bottom of  the  screen,  then  TMLGA will
continue printing with word wrapping and scrolling as necessary until the entire string is printed.

Otherwise, if you are using a window and the string or number is too long to completely fit inside the
window. it will be truncated upon reaching the lower right corner of the window. Including the optional
string variable will retrieve the portion of the string that would not fit within the window. Your program
can then deal with the string fragment as desired. 

When printing a succession of strings to the screen, it sometimes is helpful to have a pointer to where
TMLGA left off printing. A text adventure is an example where this would be useful. If the row and
column are numeric variables, they will  automatically be updated so they point to the next available
character position in the window. If you don't want to have these variables updated, simply enclose either
of them in parentheses. No update will occur if the row or column are numeric constants.

CALL LINK("INPUT",row,column,string-or-numeric-variable[,length,prompt-string])

Used to input a number or a string up to 255 characters long from the screen. The row and the column are
the pixel row and column relative to the upper left hand corner of the window. The row must be from 1 to
208. If the row would make the characters partially or completely off the bottom of the screen, then the
lower third of the screen will scroll up by the character height in  pixels until the text can fit. The column
must be from 1 to 240. The routine assumes that 255 characters are to be input unless you specify an
optional length ranging from 1 to 255 characters.

An optional prompt can be specified that will appear on the screen as a suggested response. The prompt
must  be a  string,  but  it  can  be used when inputting  either  a  string  or  a  number.  If  the  response is
appropriate, the user can simply press <Enter>. Otherwise, the response can be erased or modified as
desired.

- 9 -



The Missing Link Graphic Adventure

The routine first clears a space on the screen long enough to allow the specified number of characters to
be input. If the window is too small to permit all the characters to be input, then the window boundaries
determine the maximum number of characters. Then the optional prompt, if any, will be displayed, and
finally the cursor will appear flashing atop the first character or space.

If the row would make the characters partially or completely off the bottom of the screen, then TMLGA
scrolls the screen by the character height in pixels until the input line will fit on the screen. When the
cursor appears, you can only input to the end of that line. (or less if you are using a short optional length.) 

If the row and column are numeric variables, they will be automatically updated to report the row and
column of the cursor when enter was pressed. If you don't want to have the row or column updated,
simply enclose either of them in parentheses. No update can occur if the row or column are numeric
constants.

The keyboard functions are virtually identical to those used by Extended BASIC. <Fctn S> and <Fctn D>
move the cursor left and right. <Fctn 1> deletes a character. <Fctn 2> is used to insert characters. <Fctn
3> erases from the cursor position to the end of the line. The keys will repeat if held down. Press <Enter>
to input the string or number.

There is no equivalent to Extended BASIC's VALIDATE option. However, when inputting a numeric
value, only the ten number keys and the "E + - ." keys are active. If no numbers are typed before pressing
Enter, then the numeric variable will equal zero.

CALL LINK("SINPUT",row,column,string-or-numeric-variable[,length,prompt-string])

(Scroll+Input) Scrolls 1 line, then behaves the same as INPUT. An alternative would be to use INPUT
with the row off the bottom of the screen. 

CALL LINK("CHAR",ASCII-code,hexadecimal-string)

Used to redefine character patterns. With a few differences, this is the equivalent of the CALL CHAR
subprogram in Extended BASIC.

Only ASCII characters from 33 to 127 can be redefined. The space and the cursor cannot be redefined.
The hexadecimal string that defines the character pattern can be up to 240 characters long. This means
that up to 15 consecutive ASCII characters can be redefined each time this subroutine is called. When
defining a sequence of character patterns, trying to define ASCII characters higher than 127 by using a
long hexadecimal string will result in the excess string being ignored. No error message will be issued. If
necessary, the computer will add zeros to the string so that its length is an even multiple of sixteen. Refer
to  pages  56-58 of  the  Extended BASIC manual  for  a  more  detailed  description  of  how to  redefine
characters.

CALL LINK("CHSIZE",width,height)

Used to specify the size of each character in pixels. The width must be a numeric value from 1 to 8. The
height must be a numeric value from 1 to 12. The character size will determine the number of rows and
columns that can fit on the screen. Once the character size is set, TMLGA automatically uses characters
of that size when displaying or inputting data.

Character patterns are used starting at the upper left hand corner. If the character size is less than 8 x 8 the
extra pixels at the bottom or right hand side of the pattern will be ignored. If the character size is greater
than 8 pixels high then the extra pixels at the bottom will be blank.

- 10 -



The Missing Link Graphic Adventure

CALL LINK("FORMAT"[,format-code,number1,number2])

Used to determine the format used when displaying a number on the screen.

If the format code is "0" or if no numbers are passed to the subroutine then numbers will subsequently be
displayed in standard BASIC format.

If  the format code is not  zero then results will  be similar to those obtained when using the IMAGE
statement in Extended BASIC. The number being displayed will always occupy a predetermined amount
of space on the screen. Number1 determines the number of characters to the left of the decimal point.
Number2 specifies the number of characters to the right of the decimal point &plus the decimal point.
Thus, adding number1 to number2 will determine how many columns are required to print a number.
When using scientific notation, add four characters if using a two digit exponent, or five characters if
using a three digit exponent. If the number is too large, asterisks will be printed to identify the overflow
condition. No error message will be issued.

The following format codes can be used:

0 - Standard Extended BASIC format.
1 - Positive numbers will have a space displayed instead of a plus sign. If the number is long enough, an
extra digit can be displayed instead of the plus sign.
2 - Positive numbers will have a space displayed instead of a plus sign.
4 - Both positive and negative numbers will have their signs displayed.
8 - Scientific notation with a two digit exponent. Positive numbers will have a space displayed instead of
a plus sign.
12 - Scientific notation with a two digit exponent. Both positive and negative numbers will have their
signs displayed.
24 - Scientific notation with a three digit exponent. Positive numbers will have a space displayed instead
of a plus sign.
28 - Scientific notation with a three digit exponent. Both positive and negative numbers will have their
signs displayed.

- 11 -



The Missing Link Graphic Adventure

CARTESIAN GRAPHICS

These routines let the programmer plot points, lines, circles, and boxes on the screen. If the program is
operating in the 16 color mode, they can also be used to change the pen color. If the window size is
smaller than the full screen, then the graphics will only be displayed inside the window. The REVWIN
subroutine  can  be  used  to  specify that  the  graphics  will  only be  displayed outside  the  window.  No
problems will result from drawing either partly or totally off the edges of the screen.

In all cases, both of the optional penhue values must be included to have any effect. The pen position used
when generating turtle graphics has no effect when plotting Cartesian graphics.

CALL LINK("PIXEL",row,column[,foreground-color,background-color])

This routine places a pixel on the screen. Including the optional color values will simultaneously change
the penhue.
CALL LINK("LINE",row1,column1,row2,column2[,foreground-color,background-color])

Draws a line between the points specified by row1,column1 and row2,column2. Including the optional
color values will simultaneously change the penhue.

CALL LINK("BOX",row1,column1,row2,column2[,foreground-color,background-color])

Draws  a  rectangle  between  the  points  specified  by row1,column1  and  row2,column2.  Including  the
optional color values will simultaneously change the penhue.

CALL LINK("CIRCLE",row,col,radius[,suppression-code,foreground-color,background-color])

Draws a circle of any radius with the center at the point specified by the row
and column.

The circle is made up of eight arcs. Certain graphics applications may require
that  only  part  of  the  circle  be  displayed.  Any  combination  of  these  eight
segments can be blanked with the optional suppression code. This should be a
number between 0 and 255. If the optional suppression code isn't passed, or if it
is zero, then the entire circle will be displayed. Otherwise you can simply add up
the numbers of the arcs you want to suppress and supply that number to the
CIRCLE routine.

Including the optional color values will simultaneously change the penhue. Be sure to supply a zero for
the suppression code if you are changing the penhue and want to display the entire circle.

SPRITE GRAPHICS

The Missing Link Graphic Adventure can place up to 32 moving sprites on the screen at a time. Thirty-
two different ASCII codes are available for sprite patterns. These ASCII codes are independent of the
normal ASCII codes used when printing text. Operations can be performed simultaneously on consecutive
numbered sprites, changing their locations, patterns, colors or motions at the same time.

CALL LINK("CHAR",ASCII-code,hexadecimal-string)

Used  to  define  sprite  patterns.  With  a  few  differences,  this  is  the  equivalent  of  the  CALL CHAR
subprogram in Extended BASIC. There are no default sprite patterns. Your program has to define the
patterns of any sprites that are used.

Only the ASCII characters from 1 to 32 can be used as sprite patterns. Double size sprites use four
successive patterns and must start at ASCII 1,5,9,13,17,21,25, or 29.

The hexadecimal string that defines the sprite pattern can be up to 240 characters long. This means that up
to 15 consecutive ASCII characters can be redefined each time this subprogram is called. When defining a

- 12 -



The Missing Link Graphic Adventure

series of sprite patterns, trying to define ASCII characters higher than 32 with a long hexadecimal string
will  result  in the excess string being ignored. This means you cannot define both sprite patterns and
character patterns in the same CALL LINK("CHAR") operation.

CALL LINK("SPRITE",sprite-#,ASCII[,color,row,col,row-velocity,col-velocity])

Used to create sprites, set them in motion, or modify any of their attributes. Notice that the parameters
used  by this  routine should be provided  in  the  same  order  used by the  CALL SPRITE subprogram
normally used in Extended BASIC. However, the number sign (#) should not be placed before the sprite
number.

If the sprite number is between 1 and 32 then only a single sprite will be created or modified. If the sprite
number has three digits or more, then successive sprites will be created or modified simultaneously. For
example, number 804 will simultaneously effect 8 sprites,  starting with number 4. Number 2102 will
effect 21 sprites starting with number 2. (Note that number 212 effects 2 sprites starting with number 12,
not 21 sprites starting with 2.)

The ASCII, color, row, column, row velocity, and column velocity all operate as they do in Extended
BASIC's SPRITE subprogram. Although most of the parameters are optional, the ASCII, color, row, and
column must be provided when first creating a sprite for it to be visible.

Once a sprite has been created, any of its attributes can be modified independently of the others. If the list
of sprite attributes contains less than six values, the attributes that were omitted from the list will not be
changed.  Also,  with the  exception of  the  velocities,  providing a  zero or  a  negative  number  for  any
attribute will result in no change to that attribute.

For example, CALL LINK("SPRITE",1,0,0,96,120) will move sprite #1 to the center of the screen, but
will not change the pattern, color, or velocities. CALL LINK("SPRITE", 804,9,5) will effect 8 successive
sprites, starting with #4. The eight sprites will now use ASCII 9 for a pattern, and will be a dark blue
color. CALL LINK("SPRITE",10,0,0,0,0,10) will give sprite #10 a row velocity of 10 without effecting
any of the other current attributes.

Thus, it will be seen that the CALL LINK("SPRITE") subroutine can perform all the operations provided
by Extended BASIC's SPRITE, LOCATE, PATTERN, COLOR, and MOTION subprograms.

CALL LINK("DELSPR",sprite_number)

Used to delete either individual or consecutive sprites from the screen. The sprite number operates the
same way as it  does when creating sprites.  See the description of CALL LINK("SPRITE") for more
details on this. If the sprite number is zero then all the sprites will be deleted.

CALL LINK("FREEZE")

Used to "turn off" the automatic sprite motion for all the sprites. Their motion will stop even if motions
have been assigned using the CALL LINK("SPRITE") subroutine.

CALL LINK("THAW")

Used to "turn on" the automatic sprite motion for all the sprites.

CALL LINK("SPRPOS",sprite-#,row,column)

Used to retrieve the location of a sprite. The sprite number must be a number from 1 to 32. The location
of the upper left hand corner of the sprite will be returned in the numeric variables used for row and
column. These must be numeric variables or an error message will be issued.

CALL LINK("DSTNCE",sprite-#,sprite-#,numeric-variable)
CALL LINK("DSTNCE",sprite-#,row,col,numeric-variable)

This  functions  identically to  the  CALL DISTANCE subprogram normally used in  Extended BASIC,

- 13 -



The Missing Link Graphic Adventure

except that the number sign (#) should not precede the sprite numbers. Refer to page 80 of the Extended
BASIC manual for more details.

CHECKING FOR SPRITE COINCIDENCES

The CALL COINC subprogram is the usual method for determining coincidences in Extended BASIC.
For  example,  in  the  program line  below,  X will  be  -1 if  sprite  #1  is  within 10  pixels  of  sprite  #2.
Otherwise, X will be 0.

10 CALL COINC(#1,#2,10,X):: IF X=-1 THEN 100 ! COINCIDENCE HAS
OCCURRED

But The Missing Link Graphic Adventure requires that the CALL LINK("DSTNCE") subroutine be used
to determine coincidences.

In the program line below, X will be 100 or less if sprite #1 is within 10 pixels of sprite #2. Otherwise, X
will be greater than 100.

10 CALL LINK("DSTNCE",1,2,X)::IF X<101 THEN 100 ! COINCIDENCE
HAS OCCURRED

CALL COINC(ALL,numeric-variable)

Extended BASIC's CALL COINC subprogram can be used in the above manner to determine if any two
sprites are in actual contact with each other. This is the only way The Missing Link Graphic Adventure
can use the CALL COINC subprogram.  Refer  to  page 64 of  the Extended BASIC manual  for  more
details.

CALL MAGNIFY(magnification-factor)

Extended BASIC's CALL MAGNIFY subprogram works in the normal manner.. Refer to page 118 of the
Extended BASIC manual for more details.

SPRITE EARLY CLOCK

Normally the sprite early clock is off, which causes sprites to fade in or fade out on the right hand side of 
the screen. When the early clock is on, sprites are shifted 32 pixels to the left of the position assigned by 
the column value. This makes them fade in or fade out on the left hand side of the screen. When creating a
sprite you can turn on the early clock by adding 128 to the color value. To make this possible, the limit 
checks for sprite color have been modified so that values from 1 to 144 can be used. (Be careful not to use
colors from 17 to 127.)

100 !Sprite early clock demo
110 CALL LINK("CHAR",1,RPT$(
"F",64)):: CALL MAGNIFY(4)
130 CALL LINK("FREEZE")
140 CALL LINK("SPRITE",1,1,1
6,92,120,0,6)!Sprite #1,ASCI
I 1,white with early clock o
ff,row 92,col 120
150 CALL LINK("SPRITE",2,1,1
4+128,124,120,0,6)!Sprite #2
,ASCII 1,magenta with early
clock on,row 124,col 120
160 CALL LINK("THAW")
170 GOTO 170

- 14 -



The Missing Link Graphic Adventure

PERIPHERAL ACCESS

The Missing Link Graphic Adventure can load and save pictures in standard TI-Artist format. A single
density screen dump can be obtained at any time by calling a subroutine from within a program, or else
by simply pressing the <FCTN> and <CTRL> keys at the same time.

When saving or loading pictures, there must be at least one disk file available that has not been opened by
your Extended BASIC program.

CALL LINK("LOADP",device-name[,1])

Used to load a screen from disk. The device name should be a string that specifies the disk number and
the file name. An example of a valid device name is "DSK1.PICTURE".

If the file name is "DSK1.PICTURE", then The Missing Link Graphic Adventure will first search DSK1
for a file named "PICTURE_C". If that file is successfully found it will be loaded as the color data for the
screen. Whether or not the color file is found, TMLGA will then look for a file named "PICTURE_P". If
that file is found it will be loaded as the picture data for the screen.

If TMLGA is operating in the 2 color mode, then there will be no search for the color data, and the screen
colors will not be changed. If TMLGA is operating in the 16 color mode but fails to find the color data,
the screen colors will be set to black on cyan. In either case, an I/O ERROR message will be issued if the
picture data cannot be found.

When operating in the 16 color mode it  is possible to suppress the search for the color data. Simply
include the optional "1" after the device name to do so. The screen colors will remain unchanged when
loading a picture in this manner.

CALL LINK("LOAD23",device-name[,1])

This is the same as LOADP except that the picture is only loaded to the upper 2/3 of the screen. The
picture should have been saved with SAVE23.

CALL LINK("SAVEP",device_name[,1])

Used to save a screen to disk. The device name should be a string that specifies the disk number and the
file name. An example of a valid device name is "DSK1.PICTURE".

If the file name is "DSK1.PICTURE", then TMLGA will first save the color data to DSK1 in a file named
"PICTURE_C", unless TMLGA is operating in the 2 color mode. TMLGA will then save the picture data
to DSK1 in a file named "PICTURE_P".  If  TMLGA is unable to save the files to disk then an I/O
ERROR message will be issued. When operating in the 16 color mode, it is possible to suppress saving
the color data. Simply include the optional "1" after the device name to do so.

Sprite data cannot be saved to disk.

CALL LINK("SAVE23",device_name[,1])

This is the same as SAVEP except that the picture is only saved from the upper 2/3 of the screen. A
picture that will be loaded with LOAD23 should first be saved using SAVE23.

- 15 -



The Missing Link Graphic Adventure

CALL LINK("DUMP")

This subroutine is used to produce a single density graphics screen dump on Epson compatible printers.
Pixels that are set to the foreground color will be black, while pixels set to the background color will be
white. Sprites are not included in the screen dump. You can press <Fctn 4> to break out of the screen
dump. However, that will also cause your Extended BASIC program to halt unless you have included the
ON BREAK NEXT statement.  See  page 22  for  information on  how to  configure  The  Missing  Link
Graphic Adventure so the screen dump codes match your particular printers requirements.

Another way of obtaining a screen dump is to press the <Fctn> and the <Ctrl> keys simultaneously.
IMPORTANT: If you accidentally hit the <Fctn> and the <Ctrl> keys together and the printer is off, then
your program will freeze as TMLGA tries to print the picture. You can either turn on the printer or else
press <Fctn 4>.

The two routines below used to load fonts into TMLGA for use by the bit mapped mode end in  “A” to
show they are used by the assembly routines and not XB 2.8. Earlier disk based versions of TML have a
section showing how to use CHARDEF to define and save a font. These routines make that unnecessary.

CALL LINK(“FONTA”,fontnumber)

FONTA is used to load a different font from the cartridge for use by the bit-mapped mode. Any of the 60
fonts contained in the XB 2.8 G.E.M. roms can be loaded. Patterns are loaded for ASCII 32 to 127. The
number must be from 1 to 60 and can be a constant or a variable.

CALL LINK(“LFONTA”,Filename)

LFONTA is used to load a font from disk to be used by the bit mapped mode. Patterns are loaded for
ASCII 32 to 127.

SAVING STACK SPACE

Bit-mapped graphics require a lot of video memory. This memory is obtained at the expense of stack
space, which is especially limited when using the 16 color mode.

It  is  important  to  realize  that  the  reduced stack space  does  not  decrease the  maximum size  that  an
Extended BASIC program can be. Both the program and all numeric values generated by the program are
contained inside the 32K memory expansion. As before, there are 24488 bytes of free space available for
a program. The only reduction is in stack space.

Extended BASIC uses the stack for a number of purposes. After the prescan, it contains a list of all the
variable names that are used by the program. Both string variable names and numeric variable names are
in this list, as well as any array names. The stack space needed for each entry in the list is eight bytes plus
the number of characters in the name. The prescan also generates a list of all the named subprograms such
as JOYST, KEY, LINK and so on. User defined subprograms are also contained in this list. The stack
space needed for each entry in this list is eight bytes plus the number of characters in the name. Finally,
every string used by the program is also stored in the stack.

One way to conserve stack space is to limit your use of named subprograms. The stack space will not be
significantly reduced if  you use just  a  few named subprograms.  However,  if  you are  accustomed to
writing a lot of your own subprograms, you should convert them to GOSUBs and ON GOSUBs wherever
possible.

Stack space can be conserved by using as few numeric variables as possible, and by keeping their names
as short as possible. Use numeric constants when possible, since constants require no entry in the list of
variable  names.  Because the actual  numeric  values  are  stored in  the  32K expansion,  numeric  arrays
require only one entry in the list per array, so very little stack space is used.

- 16 -



The Missing Link Graphic Adventure

Because the actual string is also stored in the stack, strings are the worst offender as far as using up stack
space.

Instead of using string variables, use string constants whenever possible. Following are two examples that
display text on the screen. The first example uses 28 bytes more stack space than the second:

10 A$="THIS IS A TEST"::CALL LINK("PRINT",1,1,A$) ! Uses more  
stack space

10 CALL LINK("PRINT",1,1,"THIS IS A TEST") ! Uses less stack  
space

If  you must  use string variables,  reuse the same variable name as many times as possible. Keep the
number of string variables to a minimum. Following are two examples that redefine characters. Because
the second example reuses A$, it uses 30 bytes less stack space than the first.

10 A$="FFFFFFFFFFFFFFFF" :: CALL LINK("CHAR",40,A$)
12 B$="FF818181818181FF" :: CALL LINK("CHAR",80,B$) !Uses more
stack space

10 A$="FFFFFFFFFFFFFFFF" :: CALL LINK("CHAR",40,A$)
12 A$="FF818181818181FF" :: CALL LINK("CHAR",80,A$) !Uses less
stack space

If possible, avoid string arrays, as even a small array is likely to cause a MEMORY FULL condition.
Instead, keep strings in DATA statements and have your program READ them as needed. Following are
two examples. The first reads strings from a DATA statement into a string array, where they are ready for
use. The second uses 122 bytes less stack space by leaving the strings in the DATA statement until they
are needed. The latter method does have the disadvantage of being slightly slower.

10 FOR I=1 TO 10 :: READ A$(I) :: NEXT I
20 CALL LINK("PRINT",1,1,A$(7)) ! Print String7 on the screen
100 DATA String1,String2,String3,String4,String5,String6,String7,
String8,String9,String10

10 FOR I=1 TO 7 :: READ A$ :: NEXT I
20 CALL LINK("PRINT",1,1,A$) ! Print String7 on the screen
100 DATA String1,String2,String3,String4,String5,String6,String7,
String8,String9,String10

Despite your best efforts, if you write a very long program, it may be impossible to conserve enough
string space when using the 16 color mode. If that happens, you will have little choice but to go to the 2
color mode.

There is an experimental method that enlarges the stack to 1984 bytes. After TMLGA starts up enter
CALL LOAD(-31888,31,255). This seems to be functional in classic 99. This works on the real TI but
affects the sprites. There may be other side effects, so be sure to save any program before trying out this
method.

- 17 -



The Missing Link Graphic Adventure

CONVERTING PROGRAM FILES TO IV254 FILES

CALL SAVEIV(filename)

This is built into the XB 2.8 G.E.M. cartridge and is used to save a loaded program to disk in Internal,
Variable 254 format.  This format is  automatically used by Extended BASIC when saving or loading
programs that are larger than the available stack space. Because of The Missing Link Graphic Adventure's
reduced stack space, all except very short Extended BASIC programs will be saved to disk in IV254
format.  SAVEIV normally is  not  needed,  but  there  may be  circumstances  where  you might  need  to
convert to IV254. For example, a program developed in the 2 color mode might not load in the 16 color
mode without being converted. 

USING "RUN" WITHIN A PROGRAM

You can  RUN one  XB program directly from another  XB program.  The problem is  that  the  screen
information used by the first program is carried over into the second program along with some screen
garbage created by the RUN statement. Include CALL LOAD(14840,0) in the first line of the program to
clear the screen and restore everything to the normal start up values.

TML FONTS/G.E.M. FONTS

Originally TML came with 5 fonts. Below are these fonts and the equivalents in XB 2.8 G.E.M. 
TML                      XB 2.8 G.E.M.
88FONT FONT4
68FONT FONT1
57FONT FONT8
48FONT FONT9
46FONT FONT10

- 18 -


