
1 Pitfall! source code (revision B) by retroclouds

How to assemble Pitfall!

Introduction

This document concludes my work on one of my deares t projects of the

last 2 years: The implementation of Pitfall! revisi on B, the arcade

game for the Texas Instruments TI-99/4A Home Comput er. This document

describes the steps involved for building both the disk and cartridge

version, starting from the same TMS9900 assembler s ource code.

Requirements

In order to build Pitfall! You need a recent versio n of the windows

based cross—assembler winasm99 which is delivered as part of the

win994A emulator package [1] . I used winasm99 v3.8

Note that it may assemble with a newer version of w inasm99 or other

cross-assemblers targeting the TMS9900. The latter has not been

tested by me and most likely there will be quite so me manual steps

involved in accomplishing this task.

Should you not only want to assemble the cartridge version, but also

make modifications that require a relocation of cod e or a change in

code size, then you will need to be able to run a PERL interpreter.

Also you will have to find a way to concatenate the 4 x 8K binary

files that build the 32K rom image.

I used the cygwin package [2] (UNIX like environment for windows) to

accomplish these tasks.

All source code editing was done using the windows software

notepad++ [3] . A powerful text-editor that allows code-folding a nd

search/replace across documents. The Pitfall! sourc e code supports

code-folding if you use my notepad++ template file [4] .

Reference

[1] http://www.99er.net/win994a.shtml
[2] http://www.cygwin.com
[3] http://notepad-plus.sourceforge.net
[4] http://www.retroclouds.de

2 Pitfall! source code (revision B) by retroclouds

Source code details

The same source is used for building both the disk and cartridge

version. The cartridge version will only differ fro m the disk version

where necessary. I found out that winasm99 supports conditional

defines, a feature which I believe is not officiall y documented (nor

supported?). In each main file, I defined build dir ectives as seen

below.

* Some build directives for building the 2nd bank (BANK1)

********@*****@*********************@**************************

DISK EQU 0

CART EQU 1

BANK0 EQU 0

BANK1 EQU 1

BANK2 EQU 0

BANK3 EQU 0

In the below example the source code between ‘IF BA NK1’ and ‘ENDIF’

is only assembled if the BANK1 equate equals 1. So I can include the

same source file in multiple projects and control h ow it gets

assembled by setting the corresponding equates to 1 or 0.

Note that what you see in the example below, is a b ank-switch from

BANK1 (2nd bank) to BANK2 (3rd bank)

DRAWBJ LI R1,OVLAY4
 BL @SPRITE ; Put overlay sprite "yellow ground" on screen
 BL @GVRAM
 DATA VRETRN,RETADR,2 ; Restore Return address ...
 MOV @RETADR,R0
*..
 IF BANK1
 CI R0,DRAWG1 ; Called from DRAWG ?
 JEQ DRAWBZ ; Yes, then Return to DRAWG1
 LI R1,>6002 ; Select BANK2
 LI R2,PFRETN ; Jump-back to PFALL in BANK2
 B @GOBANK ; Switch bank 2
 ENDIF
*..
DRAWBZ B *R0 ; ... and Return

Build the disk version

Building the disk version is the easiest part as yo u don’t have to

worry about bank-switching and code layout. Note th at if -in the

future- a sideport-cartridge gets implemented with 24K address space

in high memory >A000, it will be a snap to assemble the disk version

for that purpose. We are only using scratch-pad mem ory so we should

be fine.

3 Pitfall! source code (revision B) by retroclouds

Let’s get started

Assuming you have already unzipped the Pitfall! sou rce directory to a

local drive/device, you have to do the below steps for successfully

creating an E/A#3 object file.

Step 1: Open the file “pitfall_disk.a99” into your text ed itor and

replace the paths in all COPY statements so that it matches with your

local source directory.

Your editors’ search & replace functionality will b e of great use, as

there are about 38 COPY statements to be adjusted.

*--

* Include all required files

*--

 COPY "D:\Projekte\pitfall\tms9900\pitfall1.a99"

 COPY "D:\Projekte\pitfall\tms9900\pitfall1a.a99"

 COPY "D:\Projekte\pitfall\tms9900\pitfall1b.a99"

 ...

Step 2: Depending if your planning on turning your fresh #E A3 object

file into a #EA5 memory image file or not, you’ll h ave to jump to the

bottom of the source file and uncomment/comment one of the last two

lines as seen below.

*--

* End of Game

*--

SLAST

 END ; For use with SAVE utility

* END SFIRST ; For autostart

The actual conversion to the #EA5 memory image file can later be done

via the SAVE utility which is part of Texas Instru ments

Editor/Assembler package.

Step 3: After you have saved your modifications, start wina sm99 and

create a new project file with the settings seen in the next

screenshot. Depending on your requirements you may want winasm99 to

inject the generated #EA3 object file directly into a disk image, for

trying with the MESS emulator. If you are using cla ssic99 for

testing/debugging, it is sufficient to let winasm99 store the

generated #EA3 file in the DSK1 folder of the class ic99 emulator.

4 Pitfall! source code (revision B) by retroclouds

Step 4: Check for assembly errors. Congratulations if all i s fine,

you have just successfully built the disk version.

5 Pitfall! source code (revision B) by retroclouds

Build the cartridge version

Now let’s get on with the fun part; building the ca rtridge version.

Before we can do that I’ll explain how the code lay out for the

Pitfall! cartridge version looks like.

Code layout

The game is split in 4 banks of 8K each. I tried to reduce the number

of times the game needs to switch banks to an absol ute minimum. That

had a big impact on the code layout.

Basically each bank is divided in two parts. Depend ing on the bank

the first part is the actual game code and/or graph ics and sound data.

The second part of each bank contains a custom vers ion of SPECTRA [1] ,

my arcade game library for the TI-99/4A.

Mind you, the included SPECTRA code is NOT the same in all 4 banks.

Only the subroutines and data required for supporti ng the game code

of the bank it resides in is included. The obvious reason for that is

to save space.

 BANK 0 BANK 1 BANK 2 BANK 3
Cartridge
header

Cartridge
Header

Cartridge
header

Cartridge
Header

TITLE SCREEN

ANIMATE HARRY

SWING ROPE

Scroll logo
Horizontally

Scroll copy-
right
vertically

Graphics and
sound data

DRAW SCENERY

GAME START

GAME OVER

PAUSE
FUNCTION

SETUP ENEMIES

ANIMATE/CONTROL
HARRY

ANIMATE/CONTROL
ENEMIES

GAMEPLAY &
SCORE

SWING ROPE

Collision
Detection

Setup all
graphics/sound
data in VDP.

Graphics and
sound data

255 Levels

>79D6 - >7FF4
SPECTRA

1554 bytes

>79E2 - >7FFF
SPECTRA

1566 bytes

>7BBA - >7FFF
SPECTRA

1094 bytes
>7C0C - >7FFF

SPECTRA
1012 bytes

 ROMC.bin ROMD.bin ROME.bin ROMF.bin

Note: The bank-switching code resides at >79D6, >79 E2, >7BBA, >7C0C

just before SPECTRA.

6 Pitfall! source code (revision B) by retroclouds

The cartridge header is present in each bank, as th e TI-99/4A can

fire up a random bank on reset. In each bank it poi nts to a routine

that switches to BANK 0 and triggers the initialisa tion routine.

Bank Switching sequences

Below you find the bank-switching sequences used in Pitfall!

Startup sequence:

BANK0 (TITLE SCREEN ANIMATION) -> BANK3 (SETUP GRAP HICS/SOUND)

-> BANK1 (DRAW SCENERY) -> BANK0 (SCROLL ACTIVISION COPYRIGHT

while waiting for game start) -> BANK1 (START GAME)

-> BANK2 (PLAY GAME)

Switching to new screen:

BANK2 (PLAY GAME) -> BANK1 (DRAW SCENERY) -> BANK2 (PLAY GAME)

Pause game:

BANK2 (PLAY GAME) -> BANK1 (BLINK PAUSE and wait un til key is

pressed) -> BANK2 (PLAY GAME)

GAME OVER:

BANK2 (PLAY GAME) -> BANK1 (GAME OVER) -> BANK0 (SC ROLL

ACTIVISION COPYRIGHT while waiting for game start)

GAME START:

BANK3 (SETUP GRAPHICS/SOUND) -> BANK1 (DRAW SCENERY) -> BANK0

(SCROLL ACTIVISION COPYRIGHT while waiting for game start) ->

BANK1 (START GAME)-> BANK2 (PLAY GAME)

Dependencies across banks

One of the biggest problems faced during the develo pment of the

cartridge version, is dealing with broken dependenc ies due to code &

ROM data reallocation during the development/debugg ing phase.

Some routines depend on routines that are located i n another bank.

That means that if you, for example add an assembly instruction in

BANK1 and reassemble, everything will be fine in BA NK1. However you

will have invalid references in BANK2, as they are still pointing to

the old addresses. Updating the addresses manually is almost an

impossible task. Therefore the below solution was i mplemented.

7 Pitfall! source code (revision B) by retroclouds

I developed a PERL script called merger that reads the 4 list files

(ROMC.lst, ROMD.lst, ROME.lst, ROMF.lst) which get generated by

winasm99 while assembling the bank images.

The script has three major tasks

� Check how much space is left in each bank image.

� Warn if code gets overwritten due to AORG statement s.

� Proces the custom file “pitfall_bank_equates.sym”,

replacing the special tags with the corresponding R OM

addresses and generate “pitfall_bank_equates.a99”

The input file “ pitfall_bank_equates.sym ” has special tags in the

format <B?|label> where ? is the value of the bank number starting

with 0.

“ pitfall_bank_equates.sym ” input file for merger script.

8 Pitfall! source code (revision B) by retroclouds

“ pitfall_bank_equates.a99 ” output file created by the merger script.

The file “pitfall_bank_equates.a99” is included via a COPY directive

in each main file used for building the bank. The i dea is that you

manually run the merger script after winasm99 has f inished. This is a

repetitive process that you need to cycle through a t least two times

before all pieces fit together. However, it will sa ve you a

considerable amount of time.

Let’s get started

Assuming you have already unzipped the Pitfall! sou rce directory to a

local drive/device, you have to do the below steps for successfully

creating the cartridge version

Step 1: Open the files “pitfall_bank0.a99”, “pitfall_bank1 .a99”,

“pitfall_bank2.a99, “pitfall_bank3.a99” into your t ext editor and for

each file replace the paths in all COPY statements so that it matches

with your local source directory.

Your editors’ search & replace functionality will b e of great use.

9 Pitfall! source code (revision B) by retroclouds

Step 2: After you have saved your modifications, start wina sm99 and

create a new project file with the settings seen in the next

screenshot and click “Start assembly”. We are build ing BANK 0.

Step 3: Check for assembly errors. If all is fine you can t hen run

the “merger” script.

10 Pitfall! source code (revision B) by retroclouds

Step 4: Repeat the steps 2 & 3 for the other banks. The bes t way to

do this is to run 4 parallel sessions of winasm99, one for each bank.

Below are the most important settings

Input Project Listing File Cartridge binary file

pitfall_bank0.a99 ROMC.lst ROMC.bin

pitfall_bank1.a99 ROMD.lst ROMD.bin

pitfall_bank2.a99 ROME.lst ROME.bin

pitfall_bank3.a99 ROMF.lst ROMF.bin

Important! Due to cross-dependencies you must repea t the cycle of

building banks 0-3 at least 2 times in a row until everything falls

into place.

Best is to monitor “pitfall_bank_equates.a99” after each run of the

merger script until there are no more changes from version to version.

Step 5: We are almost done. Now concatenate the 4 binary fi les

ROMC.bin, ROMD.bin, ROME.bin, ROMF.bin for getting a single binary

file PITFALL.bin

This is real easy when using cygwin, just run my sc ript “build_rom”.

Step 6: Congratulations, you have successfully built the ca rtridge

version. Enjoy!

Revision

Date Author Remark
01.01.2010 retroclouds Initial version created

