Jump to content

Search the Community

Showing results for tags '6502'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Atari Systems
    • Atari 2600
    • Atari 5200
    • Atari 7800
    • Atari Lynx
    • Atari Jaguar
    • Dedicated Systems
    • Atari 8-Bit Computers
    • Atari ST/TT/Falcon Computers
  • Gaming General
    • Classic Gaming General
    • Classic Computing
    • Modern Gaming
    • Prototypes
    • Arcade and Pinball
    • Emulation
    • Hardware
    • Gaming Publications and Websites
    • International
  • Marketplace
  • Community
  • Game Programming
  • Site
  • Classic Gaming News
  • The Club of Clubs's Discussion
  • I Hate Sauron's Topics
  • 1088 XEL/XLD Owners and Builders's Topics
  • Atari BBS Gurus's Community Chat
  • Atari BBS Gurus's BBS Callers
  • Atari BBS Gurus's BBS SysOps
  • Atari BBS Gurus's Resources
  • Atari Lynx Programmer Club's CC65
  • Atari Lynx Programmer Club's ASM
  • Atari Lynx Programmer Club's Lynx Programming
  • Atari Lynx Programmer Club's Music/Sound
  • Atari Lynx Programmer Club's Graphics
  • The Official AtariAge Shitpost Club's Shitty meme repository
  • The Official AtariAge Shitpost Club's Read this before you enter too deep
  • Arcade Gaming's Discussion
  • Tesla's Vehicles
  • Tesla's Solar
  • Tesla's PowerWall
  • Tesla's General
  • Harmony/Melody's CDFJ
  • Harmony/Melody's DPC+
  • Harmony/Melody's BUS
  • Harmony/Melody's General
  • ZeroPage Homebrew's Discussion
  • Furry Club's Chat/RP
  • PSPMinis.com's General PSP Minis Discussion and Questions
  • PSPMinis.com's Reviews
  • Atari Lynx 30th Birthday's 30th Birthday Programming Competition Games
  • 3D Printing Club's Chat
  • Drivers' Club's Members' Vehicles
  • Drivers' Club's Drives & Events
  • Drivers' Club's Wrenching
  • Drivers' Club's Found in the Wild
  • Drivers' Club's General Discussion
  • Dirtarians's General Discussion
  • Dirtarians's Members' Rigs
  • Dirtarians's Trail Runs & Reports
  • Dirtarians's Wrenching
  • The Green Herb's Discussions
  • Robin Gravel's new blog's My blog
  • Atari Video Club's Harmony Games
  • Atari Video Club's The Atari Gamer
  • Atari Video Club's Video Game Summit
  • Atari Video Club's Discsuuions
  • Star Wars - The Original Trilogy's Star Wars Talk
  • DMGD Club's Incoming!

Blogs

There are no results to display.

There are no results to display.

Calendars

  • AtariAge Calendar
  • The Club of Clubs's Events
  • Atari BBS Gurus's Calendar
  • ZeroPage Homebrew's Schedule

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Website


Facebook


Twitter


Instagram


YouTube


eBay


GitHub


Custom Status


Location


Interests


Currently Playing


Playing Next

Found 48 results

  1. DIS6502 is an interactive 6502 disassembler. It can disassemble handle plain binary files and support specific executable files of Atari 8-bit, C64 and Oric computers. This support also includes the labels and handling of the operating system vectors to make the disassembly better. It can output the assembly listing in different configurable formats and comes with preset profiles for popular assemblers like ASMED, CA64, LADS, MAC65, and MADS. There are currently two versions available: Latest 3.0 beta build: https://www.wudsn.com/productions/windows/dis6502/dis6502.zipwith resizable window and many new features Old but stable version 2.2 from 2006: https://sourceforge.net/projects/dis6502/files/latest/download Version 3.0 uses a new workspace format. You can open old workspaces in older formats but only save in the new format. Therefore you should make a backup of your old workspace, before using the new version. Version 3.0 is not yet officially released, but you are strongly encouraged to use it and send feedback.
  2. Hello there! I recently watched on YouTube a video from RetroManCave (Neil), titled "Inside the BBC Micro - Trash to Treasure (Part 2)" (https://www.youtube.com/watch?v=bQCgzIWZo0o) At 0:03:35, Neil explains that the BBC Micro's 6502 runs at 2 MHz, which makes it pretty fast, compared to other computers from the same period, for instance the Apple II that ran at 1 MHz (1.9 MHz in turbo mode). Of course, I regret that Neil didn't mention Atari's 1.79 (1.77) MHz at that point. Later at 0:08:00, Neil mentions the Rugg/Feldman benchmarks for BASIC, in which Atari BASIC (and the OS FPP) does not help to make the computer shine. To me, it's not really fair to compare the computers with merely their CPU speed (*) and Rugg/Feldman benchmarks for BASIC figures: - The Atari runs MUCH FASTER with other BASIC, such as Turbo BASIC XL, to name just one - The Atari 8-bit architecture, with dedicated additional chips, allows the CPU to focus on the main tasks, whilst the other chips deal with video, sound, P/M, etc. In lots of other computers from the same period, the CPU deals with everything, so a higher clock rate is not enough to make it faster! My question is: How to compare - with justice - the 800XL with the C64, the Apple IIe, the BBC Micro, etc in terms of performance? Any suggestion of bench marking method? (*) Same 6502 CPU for instance; We all know that a 6502 & a Z80 at 2 MHz are NOT equally powerful
  3. The vast majority of the systems in the late 70s and early 80s were built around these 8-bit CPUs. Could anyone with programming or engineering experience from that era chime in with what some of the advantages and disadvantages or each chip were? Which do you think was better? For computing? For gaming? Here's a quick list that I can think of. Please correct me where I'm wrong and add your own that I've missed. Z80: Adam/ColecoVision Sega SG-1000 Sega Master System MSX most early arcade games Game Boy Game Gear Astrocade (Also listed as a coprocessor on many 16-bit arcades/consoles) 6502: Atari 2600 Atari 8-bit computers/5200 Apple II NES/Famicom Atari Lynx Commodore 64 PC Engine/TurboGrafx 16/Duo/Express The Commodore 128 was unique in that it had both a Z80 and a 6502. And what ever happened to Zilong and MOS? Why were they never able to translate their success in the 8-bit market over into the 16-bit market and beyond?
  4. The Wikipedia page about the 1292 Advanced Programmable Video System claims it was particularly difficult to program: It made me curious. Did nearly every other processor and microcontroller back in the 1970's default to opcode $00 equals NOP? So far I have found the following: Zilog Z80 and Intel 8080: $00 = NOP (No Operation) Intel 8048 : $00 = NOP (No Operation) RCA 1802: $00 = IDL (Idle) So far, so good. But how about the others? MOS 6502: $00 = BRK (Break, causes an interrupt) GI CP-1610: $0000 = HLT (Halt, not sure what it does but likely not NOP) Motorola 6809: $00 = NEG $nn (not entirely sure about this syntax, but at least NEG) Signetics 2650: $00 = Branch to address in immediate register B (per the Wikipedia article) I failed to look up what the TMS-9900 and the Fairchild F8 do with opcode $00 or $0000. It seems that Motorola 6801/03 doesn't define $00 at all. Likely I have missed some relevant processors and microcontrollers of the time, but it seems like the article describes how a programmer used to Intel or Zilog would be confused about the Signetics. Programmers used to MOS, GI or Motorola may have been confused too, but at least not expecting NOP. Now machine code programming has far more interesting challenges than which instruction equals which value when encoded as binary/hex/decimal data, I would think that works out rather quickly, in particular if you were able to have a cross assembler on some mini computer or similar when developing software for the 1292 APVS series.
  5. On the Atari 8-Bit Forum, Heaven/TQA asked for help with retrieving an ASCII version of his demo sources in Macro-Assembler XE format. Because I recently wrote a detokenizer for Mac/65, I thought it'd be fun to try this file format too. Here's the result. It successfully detokenizes all the sample .ASM files I found in his zip-file, but I'm sure some functionality is missing (at least three assembler directives). If you stumble upon files that fail, please send them to me and I'll update the detokenizer. Or send me the Macro-Assembler XE manual, so I can add all directives at once. Compile with: gcc -O3 -std=c99 -W -Wall -o demaxe demaxe.c Run with: ./demaxe fubar.asm > fubar.txt Should also work under cygwin/mingw32. If there's interest in a Windows-binary, I might setup a cross-compiler. Leave a message below demaxe.c.gz
  6. While I was browsing some old source code, I frequently stumbled upon MAC/65 tokenized files. Being too lazy to repeatedly start an emulator to convert them to (AT)ASCII and being unable to find a program online to detokenize them, I set out to write such a program myself. With some luck, I found a description of the format in the form of an old Analog Computing article. After that, it was pretty straightforward. Here's the source. Compile with gcc -W -Wall -O3 -o demac65 demac65.c. If you want line numbers, uncomment the printf statement. If you want all lowercase, there's tr(1). Have fun demac65.c.gz
  7. Two months ago I found a SID disassembler at the website of Covert BitOps. I rewrote large parts of it and added support for SAP and NSF (NES) files. It tries to do some simple code-flow analysis to determine code and data blocks. The output is compatible with ATASM. Because I want to avoid it'll bitrot on my harddisk, like so many other of my projects, I decided to post it here. Have fun. Possible improvements (todo-list): * command line option to manually mark blocks as code or data * add emulation engine to better handle self-modifying code * multiple assembly formats (xasm, mads, et cetera) siddasm2.c.gz
  8. If anyone is wanting to get started in Assembler the first part of my "How Not to Learn Assembler" column is in the new issue of Pro(c) Atari Magazine. It has a focus on game development and will cover beginner to intermediate topics, those more advanced may want to shout at the magazine as they read it but may get a laugh or two! If anyone wants to write anything covering anything at all, please send it to me for the next issue. Thanks, Jason
  9. Hi, I wanted to try out using the S: CIO screen editor in Assembler, but I'm not sure I am going about it in the right way. When I do an OPEN, PRINT "Hello World", CLOSE, I get the attached screen, but it has 2 cursors in column 0, and a cursor after the "Hello World". The code is quite simple, and uses the OPEN, PRINT and CLOSE macros from Mac65. *= $5000 JMP PROGRAM_INIT ; ; MAC65 Macro files. Mainly used for I/O Macros ; .INCLUDE "SYSEQU.M65" .INCLUDE "IOMAC.LIB" .INCLUDE "OS.asm" PROGRAM_INIT LDA #<END_OF_PROGRAM_MEMORY STA APPMHI LDA #>END_OF_PROGRAM_MEMORY STA APPMHI+1 LDA #1 STA CRSINH LDA #0 STA LMARGN OPEN 1,12,0,"S:" ; PRINT 1," " LDA #20 STA COLCRS LDA #0 STA COLCRS+1 STA ROWCRS PRINT 1,"Hello World " CLOSE 1 LOOP1 JMP LOOP1 RTS END_OF_PROGRAM_MEMORY *=$2E0 .WORD PROGRAM_INIT I've also attached the ATR containing the executable (T1SET.EXE). Is there any way of getting rid of the extra cursor characters (actually all 3 of them)? I thought they would not be present as I set CRSINH to 1 right at the start of the program. At the moment I am working from Chapter 8 of the Atari System Reference manual by Bob Duhamel - if anyone can point me to any other info on using the S: device from Assembler, that would also be appreciated. The reason I'm looking at this is that I saw this post: and started to wonder about using the S: driver, which I haven't used before (I'm planning on converting the screen I/O in ATR Maker Deluxe - and other programs - to use the S: device, but I want to write some test programs first to make sure it works OK). Also, I'm not sure if I am setting APPMHI correctly, this is required according to the Reference Manual, but not something I can recall using before. Any help would be appreciated! t1set.atr
  10. I am using this bit of code to decide if the velocity is going to be positive or negative when a new game is started. GetRandomByte lda Random asl eor Random asl eor Random asl asl eor Random asl rol Random ; performs a series of shifts and bit operations rts jsr GetRandomByte ; generate a random number lda #%10000000 ; 1 in most significant bit mean greater then 127 bit Random ; was it less then 127? bne RandomVX ; if it was then branch lda #$ff ; set the starting duck's x velocity to -1 jmp RandomVXDone ; and jump cause we're done RandomVX lda #$01 ; set the starting duck's x velocity to 1 RandomVXDone sta DuckVX ; store duck's initial x velocity jsr GetRandomByte ; generate a random number lda #%10000000 ; 1 in most significant bit mean greater then 127 bit Random ; was it less then 127? bne RandomVY ; if it was then branch lda #$ff ; set the starting duck's x velocity to -1 jmp RandomVYDone ; and jump cause we're done RandomVY lda #$01 ; set the starting duck's x velocity to 1 RandomVYDone sta DuckVY ; store duck's initial y velocity However no matter what the velocity always stays the same. Bin: https://www.dropbox.com/s/ikjnebg1moyn0k4/duckgame.bin?dl=1
  11. It can be done in any coding language but i think assembly will be fastest. I'm looking for solution that is faster than ATARI basic which is 50-80 muls per sec and it have loss of precision :( How many times per second can 6502c multiply 10-digit number by 10-digit number without a loss of precision?
  12. Hello everyone I'm in the process of building a VCS based hardware clone from scratch and have a few queries; I am going to replace the 6507 with 6502 (to get full 64k addressing + hardware interrupts + phi 1 and phi2 clocks ) and adding 32k of extra ram like the super Atari project (site is down but thanks for the wayback machine http://bit.ly/2FHlAH7) But these "NEW" eBay 6502 cpus (http://ebay.to/2DzjYJC) should work, or are these new chips like 65c02 in that the silicon has been altered due to "modern manufacture reasons"? And what's the highest clock speed available on a 6502? Also can you place some asynchronous buffer sram [cy7c408 = 128byte sram fifo memory] (http://bit.ly/2HGAAlm) between the data lines on the tia and 6502/7, so that the when the TIA Is drawing the data is already in the buffer, and all the cpu needs to do is correctly send the corrects address locations relevant to data stored in the buffer? (i.e instead of cpu calculating the display every scan-line you simply write a few scan-lines of image data into the buffer before The TIA begins to draw, then just correctly address in the order of whats stored in the buffer and do program logic) Since the [cy7c408a] is dual ported with asynchronous R/W, means you can just clock the output data [DO0-DO7] bus with the 1.19MHz clock from the TIA, iirc the TIA doesn't tend to like bus speeds higher than 1.19MHz? Then this should allow one to overclock the 6502 with for simplicity of counting cycles a multiple of the [ntsc] color-burst [TIA] clock ( i.e being able to have 684 cpu cycles per scan-line {using a 6502 clocked @ 10.75MHz = ~3x the TIA clock } instead of just 76 cycles) in such cases also sacrificing [native 2600] compatibility for increased cpu speed and more time for crunching instructions. I would also assume having the TIA reading the buffer @ 1.19Mhz would present in situations a bottleneck as well (when "drawing" to the TIA)? Since you can write data faster to the buffer than its being read (if the CPU is overclocked)? Since it seems the cy7c408 operates similar to a giant shift register, once its written you have to wait until data to reach to the TIA before it you write new data?? Can you just fill the buffer with 128 bytes of scan-line/sound data for the TIA, then handle the TIA addressing, and just fill the buffer as its being emptied, and essentially have 128 bytes of "VRam" (well more like Video buffer)? Also Can NMI be used instead of RDY, so that when the tia begins a new frame, wsync simply have the TIA tell the 6502 to "Stop, Pause , Go and do Display routine and then come back here", instead of just halting the cpu? Aswell i have a few microchip and avr (atmega8515) mcu's laying around wanting to be used for something and with a both MCU's, it's instructions are pipelined so that it takes effectively 1 cycle to load and execute data or decode and execute an instruction, except iirc when changing the program counter which iirc takes 2 - 3 cycles, So you don't have wait states [i.e iirc if using a z80, thats takes 3+ cycles for most of its instructions which is why they have such high clocks]. Is it possible to use the atmega or 18f4550 as sort of display controller for the TIA having the MCU handle reads from the buffer instead, and handle writing the data to the TIA, and use the atmega8515 to emulate the RIOT? Is it possible to emulate the Riot but with 256 bytes of ram? iirc RIOT ram is in page 0 so is faster to access than the 32k of extra ram? Plus is it possible, using A12 and A15 with a 74hc138 and a logic gate or two as a way to partially decode address to swap between cartridge space and 32k ram, so one can simply keep some compatibility, simply if A12 is high and A15 low then cartridge ROM is accessed, and if A15 is high in any case 32k Ram is Accessed? just building it to just play 2600 games isn't really hard (it was done from 1977 to 1992 literally millions of times), and seems a little redundant to me, I just figured since you can build your own 2600 compatible hardware clone for less than $50 in parts shipped, why not beef it up for some shits and giggles like a dev kit, have 256k of rom space and 32k ram, 6502, if possible using an MCU or 2 as an "In Hardware display Kernel", as well as emulate the riot, And CO10444D. why you ask? Because i i'll have the only atari "super" VCS with full USB 2.0 support (upto 12Mbit/s if I do use the 18f4550 lol) and plus i can really push the hardware to the limit see what it can do with some actual "power" behind it
  13. I am having a small issue with my code. I am trying to get the duck to stop when it reaches the top after hitting the flyaway state. However no matter what I try the code gets ignored. Source Code Relevant section Any of you experts have any ideas on what's going on?
  14. Operating from a Windows PC development environment, I would like to be able to test my 6502 Assembly code. So, for example: I might have this code: org $0600 CLC LDA #5 ADC #3 STA 203 <end of code> I would like to be able to execute a command from the PC which will check that the above code puts the value of '8' into memory location 203. It may run Altirra or a 6502 emulator in the background, but I need to be able to extract that memory location and then report it back to the calling program. At the end I want "Test passed" or "Test failed" or something similar displaying. This way I can build up an automated test suite for all of my procedures / sections of code / macros. I have no problem with it bringing up windows whilst testing is going on, but I want all of the windows closed at the end of the tests. Any ideas of the best way of implementing this? I guess I'd need to automatically dump the memory contents and then extract the memory values that I require...
  15. My son recently expressed interest in learning programming. Instead of fumbling my way through it I decided to make a series of lessons on programming. This is the first one. I hope you guys enjoy it. https://www.youtube.com/watch?v=gEj3NbChJx8
  16. http://skilldrick.github.com/easy6502/index.html
  17. I stumbled across this video presentation about reverse engineering the MOS 6502, and of course I had to watch it. Quite an interesting watch! I always wondered about the LAX/SAX instructions, and why there aren't similar illegal opcodes for other register combinations. Turns out that the opcode's lower bits define which register is to be worked with, %00 for Y, %10 for A, and %01 for X. %11 is not intended to be used, but when it is used, it causes both A and X to be affected, explaining why we don't an opcode for, say, LAY. As stated in the video, visual6502.org has a lot of information about the 6502 line of processors, and many others, as well. The ultra-high-resolution images of the chip are there, and my nerd wants to print them up and frame them on a wall. I'm not really a hardware guy, more of a software guy, but for some reason I love learning how computers work (or trying to). I guess that's why I prefer the low-level programming languages. Assembly is about as low as you can get without getting into machine code, and it's a lot of fun for something like the Atari 2600. It brings you closer to the machine, and although it doesn't let you see the physical chip layout, it gives you an idea of how it must theoretically work. I would love to try programming for the other old 6502 systems like the NES after I have a 2600 game or two complete, but anything other than that is better suited to a higher-level language. C++ is my favorite language for programming, although Python is nice for simple tasks that you just want to write quickly without worrying about code efficiency.
  18. Just stumbled into a bug with MADS' built-in ADW macro when used with (ZP),Y: LDY #$04 ADW (OBSPEC),Y PTR2 PTR4 A334: A0 04 LDY #$04 A336: 18 CLC A337: B1 C1 LIMITCLIP.OFFSCREEN LDA (OBSPEC),Y A339: 65 E2 [email protected] ADC PTR2 A33B: 85 E6 STA PTR4 A33D: C8 INY A33E: B1 C1 LDA (OBSPEC),Y A340: 65 E3 ADC $E3 A342: 85 E6 STA PTR4 ; <<<<<<< should be $E7, not $E6 LDY #$04 MWA (OBSPEC),Y PTR4 A334: A0 04 LDY #$04 A336: B1 C1 LDA (OBSPEC),Y A338: 85 E6 STA PTR4 A33A: C8 INY A33B: B1 C1 LDA (OBSPEC),Y A33D: 85 E7 STA $E7 ; <<<<<<<<<<<<< $E7 = correct Using the latest build here, and I'm sure ADW used to store the MSB correctly in older versions. Haven't looked to see if the bug exists in SBW as well.
  19. Nox Archaist is a new role playing game in development by 6502 Workshop exclusively for the Apple II platform and emulators, with floppy and hard disk support. We are excited to announce the first in a series of mini stories using the Nox Archaist engine to demo the newest features in the game. The Nox Archaist story line is still under development. Any names or characters used in these mini stories are not intended to depict real or imagined NPCs, events, or bovines in the actual game. Any similarities are coincidental. ----Nox Archaist S1E1: Shattered Sword---- In this episode our hero travels to town and faces an epic struggle to get his sword repaired after breaking it over an ogre's head. http://www.6502workshop.com/2016/11/nox-archaist-s1e1-shattered-sword.html New game play elements to look for in this video include: *Conversation with NPCs *NPCs moving between locations on the map based on their daily schedule *New interactive tiles ----About Nox Archaist---- Nox Archaist, by 6502 Workshop, is a 2D tile based fantasy RPG with a classic Apple II look and feel. Our mission is to develop a modern evolution of the Apple II RPG genre, while exploring how gameplay might have advanced in tile-based RPGs if large scale development had continued on the Apple II platform after the 1980s. http://www.noxarchaist.com
  20. Hello- I am currently trying to convert some old 6502 source code to compile with DASM. One of the commands keeps getting a syntax error and I can't figure out what to change it to. The commands are currently: LDA #HIGH MYVEC LDA #LOW MYVEC MYVEC is the label of a subroutine. Anyone know the proper DASM conversion?
  21. Anyone heard of INHOME Software? Anyone still programming for 8-bit atari? What is the best set-up. I'd like to use my Mac and a 65XE? Or should I go old-school with an old 800? Is there an interest in New games for the Atari 8-Bits?
  22. I need to add two 16-bit integers (let's call them A and B; A is signed, B isn't) and get the result, less 1. Sure I can do a 16-bit decrement on the result of the addition, but 16-bit DECs require a branch instruction (for MSB roll-over) and I'm trying to save cycles. I considered using a 256 byte look up table of the index value less 1, but this comes unstuck when then LSB is zero, since element 0 is $FF: ldx a lda Less1Tab,x clc adc b sta c lda a+1 adc b+1 sta c+1 rts Less1Tab .byte $FF ?Value = $0 .rept 255 .byte ?Value ?Value = ?Value+1 .endr Making the first element of the LUT $FF seemed like a great idea until I realized it sets the carry flag when subtracting 1 from 0, messing up the MSB. Any more complex and it'll be easier to DEC the result. Any ingenious ideas?
  23. LucasFilm's Macross 6502 Assembler has been released to Github. https://github.com/Museum-of-Art-and-Digital-Entertainment/macross
  24. We are excited to introduce Nox Archaist, a new role playing game we are developing exclusively for the Apple II platform and emulators. Currently we are targeting a release date late this year. Nox Archaist will be available 100% free and the complete assembly source code will be posted on our blog. One area that we have been kind of winging is tile graphics art. We would like to offer a chance for members of the retro gaming community to participate in the design of Nox Archaist while hopefully improving the final result and getting the game into your hands more quickly. We are running a tile graphics contest! The top three submitted tiles will be determined on 7-31-2016 and the winners will receive the benefits below: *One custom in-game NPC named and based on input from the winner *Copy of the initial release of Nox Archaist on 5.25” floppy disks *Pre-release digital copy of Nox Archaist *Printed manual *Name mentioned in Nox Archaist game credits *Announcement of winners on our blog and in this forum *Any other goodies we can come up with To participate, just send us one or more tile designs using the criteria provided at the link below. Submissions can be sent via email to [email protected] Here is a link with contest details: http://www.6502workshop.com/p/graphics-contest-rules.html =====ABOUT NOX ARCHAIST===== Nox Archaist is a 2D tile based fantasy RPG with a classic Apple II look and feel. We are taking advantage of the full 128k available on the IIe and later models which will help us create features and effects that may not have been seen in vintage 1980s Apple games. Our goal is to explore how gameplay might have advanced in tile-based RPGs if substantial development had continued on the Apple II platform past the late 1980s. Game play videos and screenshots showing the current evolution of the Nox Archaist game engine are available below. http://www.6502workshop.com- Nox Archaist website with our blog, current gameplay videos, screenshots, and gifs. - Demo gameplay video featuring the current game engine. - Demo gameplay video featuring sunrise/sunset and in-game clock features
  25. Hello, I recently got a 130XE off EBay as a way of getting back into Atari 8-bits. (I sold my original Atari 800, with a Happy 1050, in 1985 to upgrade to an Amiga 1000). I have an Assembler/Editor cartridge left over from my '90s retrogaming collector days. I think it would be fun for learning 6502 programming since it's on the actual hardware. When I get going with "real" projects, I would switch to a cross-assembler and I wondering which is best to use for a newbie. I definitely would use WUDSN IDE, since I'm already familiar with Eclipse. ATASM seems nice because it is compatible with MAC/65, but judging from this forum all the cool kids seem to be using MADS. My concern with MADS is that if you know only English, the documentation seems a bit like folklore. It also seems like a "power user" tool that might be overwhelming at first. Interested in hearing comments from people who are using these tools now. Thanks!
×
×
  • Create New...